
Appeared in the Proceedings of the First Annual IEEE/ACM International Symposium on Code Generation and Optimization,

27-29 March 2003, San Francisco, California

- 1 -

© 2003 IEEE

The Transmeta Code Morphing Software:

Using Speculation, Recovery, and Adaptive Retranslation

to Address Real-Life Challenges

James C. Dehnert, Brian K. Grant, John P. Banning, Richard Johnson,

Thomas Kistler, Alexander Klaiber, Jim Mattson

Transmeta Corporation, 3990 Freedom Circle, Santa Clara, CA 95054

Abstract

Transmeta’s Crusoe microprocessor is a full, system-

level implementation of the x86 architecture, comprising

a native VLIW microprocessor with a software layer, the
Code Morphing Software (CMS), that combines an in-

terpreter, dynamic binary translator, optimizer, and run-

time system. In its general structure, CMS resembles

other binary translation systems described in the litera-
ture, but it is unique in several respects. The wide range

of PC workloads that CMS must handle gracefully in

real-life operation, plus the need for full system-level x86

compatibility, expose several issues that have received
little or no attention in previous literature, such as excep-

tions and interrupts, I/O, DMA, and self-modifying code.

In this paper we discuss some of the challenges raised by

these issues, and present the techniques developed in

Crusoe and CMS to meet those challenges. The key to
these solutions is the Crusoe paradigm of aggressive

speculation, recovery to a consistent x86 state using

unique hardware commit-and-rollback support, and

adaptive retranslation when exceptions occur too often to

be handled efficiently by interpretation.

1 Introduction

Transmeta’s Crusoe VLIW processor and CMS [20]
present an approach unique among commercial

architectures: a microprocessor system with an internal

 The authors warmly acknowledge the numerous Transmeta

engineers who designed and implemented the Crusoe Code Morphing
Software and processor. This paper is based on their excellent work.

 Email contacts: dehnert@transmeta.com, grant@transmeta.com,
and rjohnson@transmeta.com.

VLIW instruction set architecture (ISA) with little

resemblance to the external ISA (x86) that it presents to

users. This approach allows a simple, compact, low-
power microprocessor implementation, with the freedom

to modify the internal ISA between generations, while

supporting the broad range of legacy x86 software

available. Producing robust runtime performance

comparable to competing x86 implementations requires

that CMS deal effectively with a number of difficult
problems that have usually been ignored in the literature

on binary translation and dynamic optimization.

In this paper, we will sketch the structure of CMS, but

our focus will be on several of the challenges it faced that

set it apart from other systems described in the literature,

and on the solutions we implemented. These challenges
are natural consequences of CMS objectives:

• CMS must faithfully implement the complete x86

architecture: all instructions (including memory-

mapped I/O), architectural registers, and complete

exception behavior.

• CMS can make no assumptions about the operating
system running on the processor and cannot depend on

information or other assistance from the system. It is

a system-level implementation, not application-level,

and even executes the BIOS code. One consequence

is that it does not have access to the executable files of
the applications it runs; all translation is done on-line

as the target software executes.

• CMS must provide robust performance for a wide

variety of systems and applications, ranging from

games and media processing to desktop productivity

and server applications. This requires dealing with
unpleasant realities like self-modifying code and

precise exceptions. It is important to note in this

regard that CMS is not a migration tool – unlike past

commercial systems, CMS is not an interim solution

to be used during transition of the code base to a new

architecture, and cannot deal with unusual but

Appeared in the Proceedings of the First Annual IEEE/ACM International Symposium on Code Generation and Optimization,

27-29 March 2003, San Francisco, California

- 2 -

© 2003 IEEE

important performance problems by waiting for the

code in question to be converted.

Section 2 provides background on Crusoe processor
features and CMS structure for the following discussion.

Section 3 describes how CMS uses speculation, recovery,

and adaptive retranslation to address a number of

challenges of full-system, high-performance dynamic

binary translation. Section 4 surveys related work.

2 Crusoe and CMS

The Crusoe processors have microarchitectures
designed for simplicity by moving complex but infrequent

tasks into the software. Although a full discussion of the

architecture is beyond the scope of this paper, we provide

some details here relevant to the following discussion.

The Crusoe TM5800 is a VLIW processor. Each

instruction (called a molecule) can issue two or four
RISC-like operations (called atoms) to a subset of five

functional units: two ALUs, a memory unit, a floating

point/media unit, and a branch unit. It has 64 general-

purpose registers and 32 floating point registers, allowing

the architectural x86 registers to be assigned to dedicated
native VLIW registers, with an ample set available for use

by CMS.

Transmeta VLIW hardware has very few hardware

interlocks. CMS guarantees correct operation by careful

scheduling, inserting no-ops if necessary. Only

unpredictably long-latency operations such as loads that
miss in the caches have their additional latency handled

automatically by the hardware. Because CMS can be

tailored to the processor, future generations of the

hardware can change operation latencies, or other aspects

of the native ISA or microarchitecture, without affecting

the visible x86 architecture.

In fact, the current TM5000 family evolved

significantly from the first TM3000 family Crusoe

processors, adding atoms to more efficiently implement

x86 segmentation, 16-bit operations, and indirect

branches, all without a change in the target ISA. The next

generation of Crusoe processors, the TM8000 family, will
make further native ISA changes, including a complete

re-design of the instruction formats; this will all be

invisible to x86 code executing on the processor.

CMS is structured like many other dynamic translation

systems. Initially, an interpreter decodes and executes
x86 instructions sequentially, with careful attention to

memory access ordering and precise reproduction of

faults, while collecting data on execution frequency,

branch directions, and memory-mapped I/O operations.

When the number of executions of a section of x86 code

reaches a certain threshold, its address is passed to the
translator.

The translator selects a region including that address,

produces native code to implement the x86 code from the

region identified, and stores the translation with various
related information in the translation cache. From then

on, until something invalidates the translation cache entry,

CMS executes the translation when the x86 flow of

control reaches the translated x86 code region.

Initially, the exits of a translation branch to a lookup
routine (the “no chain” path in Figure 1) that transfers

control either to an existing translation for the next

address or back to the interpreter. However, once the

branch target is identified as another translation, the

branch operation is modified to go directly there, a

process called chaining (Cmelik et al. [9]). Over time,
therefore, frequently executed regions of code begin to

execute entirely within the translation cache, without

overhead from interpretation, translation, or even branch-

target lookup.

A variety of exceptional events may interrupt this

typical control flow. This paper largely concerns the

treatment of these cases, represented by the “fault” path in

Figure 1.

The translator is the largest, most complex component

of CMS. It comprises modules that decode x86

instructions, select a region for translation, analyze x86

data and control flow within the region, generate native

VLIW code for the region, optimize it, and schedule it.

Figure 1: Typical CMS Control Flow

Interpreter

not

found

Start

Find
Next

Instruction
In

 Tcache?

Exceed
Translation
Threshold?

Interpret
Next

Instruction

no

Translate Region

Store in Tcache

Execute
Translation

from

Tcache

chain
Rollback

fault

found

yes

no

chain

Translator

Appeared in the Proceedings of the First Annual IEEE/ACM International Symposium on Code Generation and Optimization,

27-29 March 2003, San Francisco, California

- 3 -

© 2003 IEEE

The choice of translation regions is beyond the scope

of this paper, but they may be fairly large and complex,

contain long traces, IF statements, and nested loops, and
include up to 200 x86 instructions. This provides an

extended scope for optimization. The optimizer performs

a number of traditional and Crusoe-specific optimizations

on the region, and schedules the final native VLIW code

as a set of single-entry, multiple-exit traces. All of this is

done with close attention to cost, since the translator can
be a significant portion of execution time.

In addition to these components, CMS includes a

runtime system to handle devices, interrupts and

exceptions, power management, and garbage collection

for the translation cache.

3 Speculation, Recovery, and Adaptive

Retranslation

The requirement for CMS to deliver an utterly faithful
yet high-performance implementation of a legacy

commercial microprocessor architecture poses a

significant challenge. A key paradigm that allows us to

address many technical obstacles is that of speculation,

recovery, and adaptive retranslation.

Speculation in this context refers to making and

exploiting assumptions — unproven at translation time —

about the code being translated. (For example, the

translator might assume that two specific load and store

instructions reference non-overlapping memory.) This

type of speculation enables generation of much more
efficient translations, but should one or more assumptions

prove to be false, incorrect results may be produced.

Hence, the assumptions must somehow be verified at

runtime, with appropriate action taken when a violation is

detected.

CMS uses a combination of hardware and software
mechanisms to detect failing assumptions. These

mechanisms trigger native exceptions that transfer control

to handlers for the various modes of failure. The CMS

response to failures is similar to the way it deals with

normal execution. To address infrequent failures, CMS

invokes the interpreter to deal with the condition. The
interpreter, while much slower than executing

translations, implements precise x86 semantics and

guarantees correct machine state at every instruction

boundary.

Because this solution has no up-front time or space
cost, it works very well for the vast majority of

translations, which never or seldom fail any speculative

assumptions during their lifetimes. However, most

varieties of speculation occasionally fail repeatedly in

heavily executed translations, in which case the fault-and-

interpret approach incurs unacceptable overhead. To cope
gracefully with this eventuality, CMS monitors recurring

failures and generates a more conservative translation

when it deems the rate of failure to be excessive. To

reduce the performance impact of conservative
translations, CMS also attempts to confine the causes of

failures to retranslations of smaller regions than the

originals.

The Transmeta native VLIW processors provide

hardware assistance for various kinds of speculation and

subsequent recovery; we describe this mechanism in
subsection 3.1. The subsequent subsections describe the

challenges CMS meets by applying the procedure of

speculation, recovery, and adaptive retranslation:

• CMS must faithfully reproduce the precise exception

behavior of the x86 target, without overly constraining

the scheduling of its translations.

• CMS must respond to interrupts at precise x86

instruction boundaries, where the system possesses a

consistent target state.

• CMS must efficiently handle memory-mapped I/O and

other system-level operations, without penalizing
normal (non-I/O) memory references.

• Legacy PC software, especially games, often includes

performance-critical self-modifying code. Similar

problems result from pages containing both code and

data, common in Windows/9X device drivers, BIOSs,

and embedded systems running a real-time operating
system such as QNX.

We present a variety of data in this section to illustrate

these challenges. Some of it was collected on a TM5800

system, but in most cases the desired data could not be

easily extracted from the hardware, and we used data

from a Crusoe simulator that provides accurate dynamic
molecule counts but not cycle accuracy. The simulation

benchmark set includes boots of several Windows

variants, DOS, Linux, and OS/2, and benchmarks from

SPECcpu92 and SPECint2000, Windows productivity

applications, and media applications (see Appendix A for
a list). We will generally present selected or summarized

data from this set.

Note that all of the issues we discuss in this paper

occur in applications, although some (e.g., memory-

mapped I/O) are much more common in system code.

3.1 Hardware Support for Speculation and

Recovery

Compilers typically deal with recovery from

speculation by generating compensation code, which re-

executes incorrectly sequenced operations, performs

operations omitted from the speculative code path, and

corrects mismatches in register assignments

(Freudenberger et al. [13]). With this approach, hardware
support is required to defer faults of potentially faulting

Appeared in the Proceedings of the First Annual IEEE/ACM International Symposium on Code Generation and Optimization,

27-29 March 2003, San Francisco, California

- 4 -

© 2003 IEEE

instructions moved above branches (e.g., boosting, Smith

et al. [23]), to detect overlapping memory operations

scheduled out of sequence, and to branch to the
compensation code (e.g., memory conflict buffers,

Gallagher et al. [14], or the Intel IA-64 ALAT [18]).

In contrast, Crusoe native VLIW processors provide an

elegant hardware solution that supports arbitrary kinds of

speculation and subsequent recovery and works hand-in-

hand with the Code Morphing Software [8]. All registers
holding x86 state are shadowed; that is, there exist two

copies of each register, a working copy and a shadow

copy. Normal atoms only update the working copy of the

register. If execution reaches the end of a translation, a

special commit operation copies all working registers into

their corresponding shadow registers, committing the
work done in the translation. On the other hand, if any

exceptional condition, such as the failure of one of CMS’s

translation assumptions, occurs inside the translation, the

runtime system undoes the effects of all molecules

executed since the last commit via a rollback operation

that copies the shadow register values (committed at the
end of the previous translation) back into the working

registers.
1
 Following a rollback, CMS usually interprets

the x86 instructions corresponding to the faulting
translation, executing them in the original program order,

handling any special cases that are encountered, and

invoking the x86 exception-handling procedure if

necessary.

Commit and rollback also apply to memory operations.

Store data are held in a gated store buffer, from which
they are only released to the memory system at the time

of a commit. On a rollback, stores not yet committed can

simply be dropped from the store buffer. To speed the

common case of no rollback, the mechanism was

designed so that commit operations are effectively “free”
[27], while rollback atoms cost less than a couple of

branch mispredictions.

In the following subsections, we describe several ways

in which CMS takes advantage of the commit/rollback

mechanism.

3.2 Precise exceptions

Without special hardware support, it is difficult, if not

impossible, for a dynamic translation system on a

statically scheduled host to correctly model the exception
semantics of the target ISA while at the same time

achieving high performance. The primary reason is that

exception semantics impose severe constraints on

instruction scheduling. In the x86 ISA, exceptions are

precise: when one instruction causes an exception, all

1Commit and rollback can equivalently be viewed as checkpoint and

restart.

instructions preceding it must complete before the

exception is reported, and none of the subsequent

instructions may complete. Solving this problem without
special hardware support unduly constrains the scheduling

of host instructions, and/or requires compensation code,

either of which can reduce performance even in the

common case where no exceptions occur. But with

hardware support for commit and rollback and the

interpreter-based recovery procedure in place, CMS has
much more flexibility in scheduling the translated

instructions. It can reorder potentially faulting atoms or

hoist them above conditional branches, without the

bookkeeping required by traditional control speculation,

and without generating space-consuming compensation

code.

The consequence of this approach, however, is that for

a fault that should be reflected at the x86 level, CMS must

determine whether the fault is genuine or whether it is a

result of speculative instruction reordering. If the

interpreter re-executes the instructions of the entire

translation without encountering the fault, then it was
speculative and, if it is infrequent, CMS can ignore it and

continue normal execution.

The preferred strategy for dealing with a recurring

fault depends on its class. For genuine x86 faults, we

narrow the translation size around the faulting instruction.
This reduces the amount of work that must be rolled back

and/or interpreted, since the neighboring regions can

remain large and highly optimized. We can ultimately run

translations of all but the faulting instruction, which

becomes a zero-instruction translation that simply calls

the interpreter to execute the faulting instruction.

For frequently recurring speculative faults, we

retranslate with more conservative policies that are likely

to eliminate the sort of fault encountered, after first

cutting the translation into smaller regions so that much of

it can still benefit from aggressive translation. The new

translation keeps track of the policies used, so that if
another problem arises requiring different conservative

policies, CMS will add them to the existing ones to avoid

bouncing between translations with incomparable

policies, neither of which solves both problems.

3.3 Interrupts

Commit and rollback serve a similar purpose with

respect to interrupts. Because an interrupt causes a

rollback to a consistent target state, translated code need

not be concerned about interrupts in intermediate states
that are not consistent with an x86 state between

instructions. Interrupts do not trigger adaptive

retranslation, since they are normally not directly related

to the translation being executed when the interrupt is

delivered.

Appeared in the Proceedings of the First Annual IEEE/ACM International Symposium on Code Generation and Optimization,

27-29 March 2003, San Francisco, California

- 5 -

© 2003 IEEE

3.4 Memory-mapped I/O

The Crusoe system (processor and CMS) is designed

to transparently run arbitrary code written for the x86

architecture, including both operating system and

application software. Besides the obvious difficulty of

accurately implementing the many corner cases of the x86

system-level architecture, CMS must also correctly
implement low-level I/O interactions with physical

devices. One of the most important rules associated with

I/O transactions is that they must be performed in the

original (x86) program order since they trigger

irrevocable interactions with external devices.

In the x86 architecture, devices can be accessed via

two different mechanisms: explicit I/O instructions

(“in/out”), and memory-mapped accesses. The former are

easily recognized and translated appropriately. Memory-

mapped I/O, however, cannot be distinguished at

translation time from regular memory accesses. In
addition, a given x86 instruction can access both regular

memory and I/O space over the course of program

execution.

Entirely suppressing memory reordering to solve this

problem would be a severe handicap. To illustrate this
point, we ran simulations of our benchmark suite with and

without reordering of memory operations. Figure 2 above

presents a representative subset of the results, along with

the means for the entire set (see Appendix A). Several of

the boots degraded by less than 5%, but the cost was as

high as 26% in Windows/ME boot. The application

degradation was much greater.

To solve the problem, load and store atoms on the
Crusoe hardware specify whether they have been

reordered with respect to the original x86 program. When

such a speculative memory atom accesses a memory page

that is mapped to I/O space, the hardware raises an

exception [19]. At this point, CMS performs a rollback to

the previously committed state and interprets. If the faults
recur too often, CMS regenerates the translation, this time

without reordering the offending memory reference.

3.5 Data speculation

Even for memory operations that access memory and

not devices, it is common that the translator cannot prove

that load and store addresses do not overlap; this also

precludes reordering.

A key insight is that in practice, memory references

rarely overlap if overlap is not obvious, so reordering is
usually safe (and beneficial). Crusoe provides simple

hardware support (the alias hardware [20]) that allows

CMS to reorder selected memory references, with

hardware taking on the burden of verifying at runtime that

the reordered references did, in fact, not overlap. If

hardware detects a violation, it raises an exception, and
CMS may invoke rollback and conservative re-execution

in the interpreter to handle the condition.

Figure 2: Degradation Caused by

Suppressing Memory Reordering

18.95%

1.48%

7.58%

1.95%

17.19%

26.08%

4.19%

19.64%

10.09%

29.71%

10.33%

26.91%

44.64%

26.63%

97.29%

66.22%

78.38%

37.54%

35.44%

22.76%

24.24%

17.97%

33.14%

0% 10% 20% 30% 40% 50% 60%

DOS Boot

Linux Boot

OS/2 Boot

Windows 95 Boot

Windows 98 Boot

Windows ME Boot

Windows NT Boot

Windows XP Boot

Mean (all boots)

Quake Demo2 (DOS)

023.eqntott (Linux)

026.compress (Linux)

072.sc (Linux)

085.gcc (Linux)

047.tomcatv (Linux)

048.ora (Linux)

052.alvinn (Linux)

077.mdljsp2 (Linux)

Multimedia (Win98)

CPUmark99 (Win98)

Quattro Pro (WinNT)

Wordperfect (WinNT)

Mean (all apps)

Figure 3: Degradation Caused By No

Alias Hardware

9.32%

1.25%

4.98%

2.39%

5.74%

7.86%

3.94%

13.46%

5.48%

20.01%

3.88%

21.57%

25.82%

15.70%

94.49%

40.31%

82.50%

33.83%

25.34%

14.94%

16.46%

14.73%

23.53%

0% 10% 20% 30% 40% 50% 60%

DOS Boot

Linux Boot

OS/2 Boot

Windows 95 Boot

Windows 98 Boot

Windows ME Boot

Windows NT Boot

Windows XP Boot

Mean (all boots)

Quake Demo2 (DOS)

023.eqntott (Linux)

026.compress (Linux)

072.sc (Linux)

085.gcc (Linux)

047.tomcatv (Linux)

048.ora (Linux)

052.alvinn (Linux)

077.mdljsp2 (Linux)

Multimedia (Win98)

CPUmark99 (Win98)

Quattro Pro (WinNT)

Wordperfect (WinNT)

Mean (all apps)

Appeared in the Proceedings of the First Annual IEEE/ACM International Symposium on Code Generation and Optimization,

27-29 March 2003, San Francisco, California

- 6 -

© 2003 IEEE

Simulation data from our benchmark suite

demonstrates the performance benefit of the alias

hardware. Figure 3 above presents the performance
degradation that results from not using the alias hardware,

which is almost as severe as not reordering at all.

Crusoe’s alias hardware is much simpler than that

required to enforce memory constraints in an out-of-order

processor. It is also simpler than other approaches

suggested for VLIW processors, such as the memory
conflict buffer [14] or IA-64 ALAT [18]. Those use fully

associative tables with hardware mechanisms to

determine which protected-address table entries to

overwrite and to check for each out-of-order memory

operation, whereas Crusoe requires the translator to

explicitly specify this.

Recurring faults are handled by cutting the faulting

translation into smaller regions and by scheduling any

regions that still fault without speculative load/store

reordering.

3.6 Self-modifying code (SMC)

Programs that modify themselves during execution can

cause significant problems for any microarchitecture. For

CMS, this manifests itself in the problem of keeping the

translation cache consistent with its associated x86 code.
Once again, CMS speculates, this time that the x86 code it

translates does not change. In this case, both the detection

of problems and adaptation techniques are of interest.

The original Transmeta approach to detecting SMC

was to simply write-protect an x86 memory page

whenever an x86 code fragment on that page was
translated by CMS. If data on that protected page were

later modified, either explicitly by the program or

implicitly by system paging activity, then a fault occurred,

and CMS would discard the affected translation(s).

Page-level protection is adequate for correctness, and
critical to performance in the common case, but it does

not efficiently handle self-modifying code. It also does

not deal well with the sharing of code and writable data

on the same page, if such occurs in performance-critical

loops (e.g., for graphics processing in games). Although

these are becoming less common in modern compiled
applications, device drivers, games like Quake, embedded

code, etc., use techniques such as assembly modules that

intermix code and local (static) data. This is particularly

common in BIOS and embedded software, which are

subject to space constraints and often use assembly code

extensively.

There are two costs incurred by SMC. The first is

handling the fault when the page is written and

invalidating translations associated with the page. The

second is re-generating the translations the next time code

on the page is executed.

The following subsections discuss three techniques for

minimizing the cost of detecting writes to pages

containing mixed code and data, and then two techniques
for adapting to code that is actually self-modifying.

3.6.1 Fine-Grain Protection

The Crusoe processor provides hardware support for

write-protecting memory at granularity finer than full

pages [5]. The key insight is that finer granularity is only

needed for a few pages at a time (e.g., the few pages that
share writable code and data). As a result, only a few

pages need to have fine-grain entries in a hardware cache,

and a software fault handler can update the cache from

memory on misses, allowing a small, simple hardware

structure. The granularity supported cannot always

identify a single translation affected, but typically narrows
the impact to a few, reducing both the number of faults

and the number of invalidated translations for each.

In order to avoid excessive processing for the common

case of paging virtual memory, DMA writes to a

protected page invalidate all translations for the page.

We simulated several benchmarks to demonstrate the
benefit of fine-grain protection, comparing the number of

protection faults with and without the fine-grain feature,

and the overall slowdown in molecules executed per x86

instruction. The results are given in Table 1 below. The

“faults” column gives the ratio of the number of
protection faults without fine-grain support to the number

with fine-grain support, and the “slowdown” column

shows the impact on molecules executed per x86

instruction as a result.

Table 1: Slowdown Without Fine-Grain Protection

 Faults Slowdown

Win95 boot 52.8x 2.2x

Win98 boot 59.4x 3.8x

MultimediaMark 46.8x 1.6x

WinStone Corel 54.2x 2.1x

Quake Demo2 7.7x 1.02x

3.6.2 Self-Revalidating Translations

If CMS determines that a translation is encountering
legitimate protection faults due to data stores in the same

region as code, it can make the faults less expensive by

adding a prologue, which is a code segment that is

invoked just before a translation is entered. Prologues are

generally used for temporary monitoring purposes, and
allow easy installation and removal without disturbing the

translation. Inserting a prologue involves removing any

Appeared in the Proceedings of the First Annual IEEE/ACM International Symposium on Code Generation and Optimization,

27-29 March 2003, San Francisco, California

- 7 -

© 2003 IEEE

existing chains to the translation, and replacing its start

address by the prologue address.

Once a candidate translation for self-revalidation is
identified, it is flagged. The next time it is encountered, it

is re-translated in order to capture the translated x86 code

(which is not preserved initially). Later, if the handler for

a fine-grain protection fault determines that the

translation(s) might be affected, it enables the prologue

and turns off protection to avoid the cost of faulting again.
When the translation is next invoked, the prologue

verifies that the x86 code corresponding to the translation

has not changed, re-enables protection, re-verifies the x86

code, disables the prologue, and then executes the

translation.

This technique does not eliminate protection faults due
to writes. But it executes the fault handler and checks at

most once per write to the protected area, and at most

once per execution of the translation, so it can be quite

efficient if the writes are much less frequent than

executions of the affected translations. After retranslation

to capture the x86 code to be checked, the translation
executes at normal optimized speed unless there are

writes to the protected area. As an example of the benefit,

the Quake Demo2 benchmark achieves a 28% higher

frame rate with self-revalidation than without it.

If the protection faults do happen frequently, the
overhead of the fault handler and the checks is significant,

since a revalidation is likely to be at least as expensive as

executing the translation. Further, this technique does not

work if it is the translation itself that is writing on its

associated x86 region, since the write occurs after the

checking prologue has completed, causing a new fault and
preventing forward progress. For such cases, the

following technique for optimizing fault detection may

work better.

3.6.3 Self-Checking Translations

Instead of protecting the x86 page when creating a

translation, it is possible to leave the memory page
unprotected, and have the translation itself check that the

source x86 bytes have not changed, by fetching them and

comparing them to their values when the translation was

created.

We can merge the checking code into the normal
translation code, since if it detects a mismatch we can

rollback any translation effects that have already

occurred. There are scheduling constraints that must be

observed for the inserted checking code. The fetches for

checking an x86 operation must appear logically after any

stores up to and including the operation being checked,
and on the same control flow path as the operation being

checked. However, fetching for self-checking can be

reordered relative to stores using the alias hardware, as

outlined in section 3.5. Hence, the overhead of self-

checking a translation once is many times smaller than

that of self-revalidating it once, although its average cost

may be much higher if the translation is executed many
times between protection faults.

To evaluate the typical cost of self-checking

translations, we ran simulations of our benchmark suite

normally, and with all translations forced to be self-

checking. Self-checking adds a mean of 83% to the code

size (ranging from 58% to 100%), and a mean of 51% to
the molecules executed (ranging from 11% to 124%);

because of cache effects, the actual runtime impact would

be higher.

Although self-checking translations are less expensive

than interpretation or re-translation, we can see from the

data above that their overhead is still significant,
especially for long translations (in absolute cost).

Therefore, even if we can use this technique to eliminate

unnecessary self-modification failures, we first attempt to

adapt by producing smaller translations so that a

minimum of code must be checked.

3.6.4 Stylized SMC

The above techniques are helpful only if the code is

not actually changing, i.e. if the protection faults result

from data being written in the same page as code. The

last two techniques described here are methods of

adapting to genuinely self-modifying code

Many PC applications that rely on self-modifying code

do so in very stylized ways. A common approach, for

example, is to modify the immediate or offset fields in

instructions inside an inner loop, just before entering that

loop.2 It is possible to avoid continual retranslation in this

special case by translating the original x86 code in such a
way that the translation loads (at runtime) the immediate

fields in question from the code stream. Consider the x86

instruction:

label: add %eax, 0x123456

This can be translated into Crusoe code

ld %temp,[label+1]
add %eax, temp

This translation is valid regardless of how the

“0x123456” immediate field is modified by the applica-
tion. Note, however, that this technique must be used in

conjunction with self-checking or self-revalidation, to

verify that instruction fields other than the immediate

operands have not been modified.

2 This approach seems to be particularly popular on register-poor

machines such as the x86, when there are loop-invariant constants but no
registers to hold them throughout the loop. The game Doom uses it in
critical loops, for instance, and it also occurs in current applications such
as Adobe Premiere. However, it rarely appears in portable, compiled
benchmarks like SPEC.

Appeared in the Proceedings of the First Annual IEEE/ACM International Symposium on Code Generation and Optimization,

27-29 March 2003, San Francisco, California

- 8 -

© 2003 IEEE

3.6.5 Translation Groups

Sometimes self-modifying code repeatedly writes and

executes one of a small number of versions of the
rewritten x86 code. For example, the device-independent

BLT driver in Windows/9X uses up to 33 versions in

benchmarks we have checked, with the version depending

on the operation to be performed and the graphics chip’s

hardware capabilities. In such cases, it is desirable to

have the old translation available when an old version
reappears. CMS keeps such translations in translation

groups. These are lists of translations of the same x86

code region, with the currently active translation first on

the list. If the first translation fails its self-check after a

protection fault, the others are checked for a current

match with the x86 code before a new translation is
produced, and any matching translation found becomes

the current one.

As a result of these techniques, in cases encountered in

practice, CMS robustly obtains good performance for

both self-modifying code and mixed code and data.

4 Related Work

CMS is most closely related to the emulation, binary

translation, and dynamic optimization literature, which

has a long history. In the comments that follow, we focus

on software emulation systems, although some may have

hardware features to facilitate emulation.

We classify software emulation systems as interpreters
(instruction-at-a-time with no memory), static translators

(offline), and dynamic translators (online). (This is the

classification of Altman et al. [2], which uses “emulator”

instead of “interpreter.”) CMS includes both an interpreter

and a dynamic translator (which we call simply the

translator). We call the emulated architecture the target,
and the emulating architecture the host.

Many emulation systems are self-hosting, that is the

host and target architectures are the same. Such systems

are generally created for purposes of optimization or

instrumentation. A well-known recent dynamic

optimization system is Dynamo from HP Labs (Bala et al.
[3,4]) and its successor DELI [10]. Dynamo’s high-level

architecture is similar to that of CMS, but it can fall back

on efficient native execution, so there is no need to

attempt translation for code that is problematic, or just

cannot be improved. For this reason, the tradeoffs of self-
hosting systems are quite different from systems like

CMS.

Another rich area of research has been virtual target

emulators, where the target architecture is a specially

designed virtual machine rather than a physical

architecture. One interesting example comes from the
IBM migration of the AS/400 system to the PowerPC

architecture, which was based on a static translation of an

abstract machine code included by the AS/400 compilers

in application object code (Soltis [24]). Java virtual
machines are a much better known example. They

emulate an abstract byte code designed specifically to be

efficiently interpreted on a wide variety of machines [29].

From the early interpreter-only systems, these emulators

have developed into sophisticated dynamic optimizers,

such as Sun’s HotSpot [26], IBM’s Jalapeño (Burke et al.
[6]), and LaTTe (Yang et al. [28]). These systems have a

great deal in common with CMS, including tradeoffs

between translation cost and code quality. But the virtual

machine semantics are tightly controlled, avoiding most

of the problems we have discussed in this paper.

Cross-hosted emulators, emulating a target architecture
on a different host, must deal more completely with the

full variety of target code. A common purpose is to move

code from the target architecture to the host architecture,

usually to facilitate customer migration from an older

architecture to a newer one intended to replace it.

Examples are DEC’s migration tools from DEC
VAX/VMS to Alpha/OpenVMS (VEST) and MIPS/Ultrix

to Alpha/OSF1 (mx, see [SCKMR92]). Performance

degradation is undesirable for these systems, but they

usually benefit from hosts that are significantly faster than

the target, and problematic cases can be ported to native
code on the new architecture. The VEST project’s

objectives, for instance, explicitly allowed for rejecting

some target code, with diagnostic information to guide

manual intervention. A later Alpha migration project is

FX!32, for running Windows NT x86 code on Windows

NT Alpha (Chernoff et al. [7]). FX!32 uses an interpreter
with a static translator that is triggered by interpreting

target code but runs offline and preserves its translations

in a database. It is not a perfect emulator of the x86, for

instance doing 64-bit instead of 80-bit floating point, and

not supporting the Windows NT Debug API because it

cannot rematerialize the x86 state at arbitrary points.

A more recent commercial project is HP’s Aries, for

migration from HP-PA to IA-64 (Zhang et al. [30]). It

features an interpreter and dynamic translator architecture

more akin to CMS. However, it does only single-block

translations, and weaknesses like keeping target floating-
point register images in memory likely cause severe

performance problems on significant classes of code. The

reference provides no performance information, and to

our knowledge the project has not been completed.

Another class of migration tools is those intended by

one vendor to capture applications created for another
vendor’s architecture. An early example is Hunter

System’s XDOS x86 DOS emulator [17], a static

translator. The emulated software was not intended to be

the primary use of the target systems, so performance

requirements were modest. Difficult applications could

Appeared in the Proceedings of the First Annual IEEE/ACM International Symposium on Code Generation and Optimization,

27-29 March 2003, San Francisco, California

- 9 -

© 2003 IEEE

be handled by special-case modifications, and translation

often required significant manual intervention.

All of the above systems have escape valves not
available to CMS, which must seamlessly execute any

x86 software, and must provide performance competitive

with hardware-only x86 microprocessors that continue to

improve. The most important distinction is that they are

all application-level emulators that do not address system

code, instead redirecting system calls to similar system
calls on the host. However, CMS does not need to

emulate device behavior, since its host I/O subsystem is

the same as the target.

The system with objectives and constraints closest to

CMS is DAISY from IBM Research (Ebcioglu et al.

[11,12,21]). DAISY is a full-system implementation of a
PowerPC or System/390 target on a tree VLIW host, with

an interpreter and dynamic translator architecture similar

to CMS. Its translation region selection is different (tree

regions vs. more general code segments in CMS), it uses a

state-repair approach to handle precise exceptions

(Gschwind et al. [15]) rather than the commit and rollback
approach of CMS, and it uses only a fine-grain protection

approach to self-modifying code. The references do not

discuss our other challenges.

There have been many other binary translation

systems. More extensive prior work discussions may be
found in Altman et al. [2,12].

5 Conclusions

CMS is a commercially available system that provides

a high-performance, fully compatible implementation of

the x86 ISA on a different host ISA (the Crusoe native

VLIW). CMS is similar in overall architecture to a

number of binary translation systems described in the
literature, but a key to its success is attention to

challenges such as those described in this paper. The

paradigm of speculating aggressively, rolling back to a

consistent state for recovery when exceptions are

detected, and adaptively retranslating to deal with

recurring exceptions is a powerful part of the CMS
solution. These challenges do not become apparent until

one attempts to run a wide variety of everyday workloads,

yet it is dealing with them that makes CMS a robustly

performing product instead of an experimental system.

References

[1] Erik R. Altman, Kemal Ebcioglu, Michael Gschwind, and

Sumedh Sathaye, “Advances and Future Challenges in

Binary Translation and Optimization,” Proc. of the IEEE,

Special Issue on Microprocessor Architecture and Compiler

Technology, Nov. 2001, pp. 1710-1722.

[2] Erik R. Altman, David Kaeli, and Yaron Sheffer, “Welcome

to the Opportunities of Binary Translation,” IEEE Computer

33 (3), March 2000, pp. 40-45.

[3] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia,

“Transparent Dynamic Optimization: The Design and

Implementation of Dynamo,” Tech. Report HPL-1999-78,

HP Laboratories Cambridge, June 1999.

[4] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia,

“DYNAMO: A Transparent Dynamic Optimization

System,” PLDI, June 2000, pp. 1-12.

[5] John Banning, Peter H. Anvin, Benjamin Gribstad, David

Keppel, Alex Klaiber, and Paul Serris, “Fine grain

translation discrimination,” US Patent 6,363,336, 26 March

2002.

[6] Michael G. Burke et al., “The Jalapeno Dynamic Optimizing

Compiler for Java,” ACM 1999 Java Grande Conference,

June 1999, pp. 129-141.

[7] A. Chernoff, M. Herdeg, R. Hookway, C. Reeve, N. Rubin,

T. Tye, B. Yadavalli, and J. Yates, “FX!32: A Profile-

Directed Binary Translator,” IEEE Micro 18 (2),

March/April 1998, pp. 56-64.

[8] Robert F. Cmelik, David R. Ditzel, Edmund J. Kelly, Colin

B. Hunter, et al, “Combining Hardware and Software to

Provide an Improved Microprocessor,” US Patent

6,031,992, Feb. 2000.

[9] Robert F. Cmelik and David Keppel, “Shade: A Fast

Instruction-set Simulator for Execution Profiling,” Proc.

Sigmetrics Conf. on Measurement and Modeling of

Computer Systems, 1994, pp. 128-137.

[10] Giuseppe Desoli, Nikolay Mateev, Evelyn Duesterwald,

Paolo Faraboschi, and Joseph A. Fisher, “DELI: A New Run-

time Control Point,” Proc. of MICRO-35, Nov. 2002.

[11] Kemal Ebcioglu and Erik R. Altman, “DAISY: Dynamic

Compilation for 100% Architectural Compatibility,” Proc.

of the 24th Annual Int’l Symp. on Computer Architecture,

June 1997, pp. 26-37.

[12] Kemal Ebcioglu, Erik R. Altman, Michael Gschwind, and

Sumedh Sathaye, “Dynamic Binary Translation and

Optimization,” IEEE Trans. on Computers 50 (6), June

2001, pp. 529-548.

[13] Stefan M. Freudenberger, Thomas R. Gross, and P.

Geoffrey Lowney, “Avoidance and Suppression of

Compensation Code in a Trace Scheduling Compiler,”

ACM Trans. On Programming Languages and Systems 16

(4), July 1994, pp. 1156-1214.

 [14] David M. Gallagher, William Y. Chen, Scott A. Mahlke,

John C. Gyllenhaal, and Wen-mei W. Hwu, “Dynamic

Memory Disambiguation Using the Memory Conflict

Buffer,” Proc. Sixth Int'l Conf. on ASPLOS, October 1994,

pp. 183-193.

[15] Michael Gschwind and Erik R. Altman, “Precise Exception

Semantics in Dynamic Compilation,” Proc. 2002 Symp. On

Compiler Construction, April 2002, pp. 95-110.

[16] Michael Gschwind, Erik R. Altman, Sumedh Sathaye, Paul

Ledak, and David Appenzeller, “Dynamic and Binary

Translation,” IEEE Computer 33 (3), March 2000, pp. 54-

59.

Appeared in the Proceedings of the First Annual IEEE/ACM International Symposium on Code Generation and Optimization,

27-29 March 2003, San Francisco, California

- 10 -

© 2003 IEEE

[17] Colin Hunter and John Banning, “DOS at RISC,” Byte

Magazine, Nov. 1989, pp. 361-368.

[18] Intel Corp., Intel IA-64 Architecture Software

Developer's Manual, vol 1, Order #245317-001, January

2000.

[19] Edmund J. Kelly, Robert F. Cmelik, and Malcolm J. Wing,

“Memory controller for a microprocessor for detecting a

failure of speculation on the physical nature of a component

being addressed,” US Patent 5,832,205, Nov. 1998.

[20] Alexander Klaiber, “The Technology Behind the Crusoe

Processors,” White Paper, http://www.transmeta.com/pdf/

white_papers/paper_aklaiber_19jan00.pdf, Jan. 2000.

 [21] Gabriel M. Silberman and Kemal Ebcioglu, “An

Architectural Framework for Supporting Heterogeneous

Instruction-Set Architectures,” IEEE Computer 26 (6), June

1993, pp. 39-56.

[22] R. Sites, A. Chernoff, Kirk, M. Marks, and S. Robinson,

“Binary Translation,” Comm. ACM 36 (2), Feb. 1993, pp.

69-81.

[23] Michael D. Smith, Mark Horowitz, and Monica S. Lam,

“Efficient Superscalar Performance Through Boosting,”

Proc. 5th Int'l Conf. on ASPLOS, October 1992.

[24] Frank G. Soltis, Inside the AS/400, Duke Press, 1997.

[25] Standard Performance Evaluation Corp., “SPEC OSG

Frequently Asked Questions,” http://www.specbench.org/

osg/faq/archive.

 [26] Sun Microsystems, “The Java Hotspot Performance

Engine Architecture,” http://java.sun.com/products/

hotspot/whitepaper.html, April 1999.

[27] Malcolm J. Wing and Godfrey P. D’Souza, “Gated store

buffer for an advanced microprocessor,” US Patent

6,011,908, Jan. 2000.

[28] Byung-Sun Yang et al, “LaTTe: A Java VM Just-in-Time

Compiler with Fast and Efficient Register Allocation,”

Proceedings of the 1999 International Conference on

Parallel Architectures and Compilation Techniques, Oct.

1999, pp. 128-138.

[29] Frank Yellin and Tim Lindholm, The Java Virtual Machine

Specification, Addison-Wesley, 1996.

[30] Cindy Zheng and Carol Thompson, “PA-RISC to IA-64:

Transparent Execution, No Recompilation,” IEEE Computer

33 (3), March 2000, pp. 47-52.

A. Benchmarks

The benchmarks used are:

• OS boots of DOS, Linux, OS/2, Windows95,

Windows98, WindowsME, WindowsNT, and
WindowsXP.

• Linux and/or Windows98 SPECcpu92: alvinn,

compress, eqntott, espresso, gcc, li, mdljdp2, mdljsp2,

ora, sc, spice2g6, su2cor, tomcatv, wave5.

• Windows98 SPECint2000: crafty.

• Windows98 and/or WindowsNT Winstone98: Access,
Corel, Navigator, PowerPoint, QuattroPro,

WordPerfect.

• Miscellaneous: MultimediaMark99, CpuMark99,

Quake Demo2, WindowsME help.

Data from all of these are included in the mean values
given in Tables 1 and 2.

Keywords

Binary translation, dynamic translation, dynamic optimi-

zation, emulation, speculation, self-modifying code

