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Abstract

The growing maturity and deployment of instruction-
set simulators highlights a need for efficient and cor-
rect simulation of all processor and platform fea-
tures. Many applications and operating systems
change the instruction space dynamically: dynamic
linking, just-in-time compilation, and so on. Unfor-
tunately, no single simulator implementation works
well in all situations. This paper presents general
strategies and specific solutions for efficient simula-
tion of instruction-space modification.

1 Introduction

Instruction-set simulators are used widely because
they allow computers to run programs written for
other machines, enable detailed performance analy-
sis, and support sophisticated debugger features. A
simulator is most useful when it implements most
features of the target machine being simulated, and
when it operates efficiently on the host machine which
runs the simulator. The Shade papers [CK93, CK%4,
CK95] survey simulators, their uses, and implemen-
tation techniques.

Many systems use instruction-space modification.
Widely-used examples include dynamic linking, just-
in-time compilers, debugger breakpoints, and graph-
ics. Both operating systems and applications use it.
The granularity ranges from megabytes down to indi-
vidual bits in instructions. Changes may be one-shot
or may occur as often as every time the code is exe-
cuted. Keppel’s dissertation [Kep96] has a survey and
bibliography of many types and uses of instruction-
space modification.

Unfortunately, modern simulators often fail to im-
plement instruction-space modification, or they run
much slower in order to implement it. Decoding tar-
get instructions is typically expensive, so fast sim-
ulators often cache a decoded form of instructions.
Caching allows simulators to skip expensive decod-

ing, but also introduces a cache coherency problem:
when an instruction changes, the cache may hold an
old version of the instruction but the simulator must
execute the newest one. Although specific coherency
cases can be efficient, the general case is difficult.

In the best case, the target system provides a prim-
itive for signaling coherency. Both hardware and sim-
ulators can then ignore instruction-space changes un-
til the primitive is invoked. For example, an archi-
tecture may provide a special inval instruction. A
caching simulator ignores instruction-space changes.
When target code executes inval, the simulator dis-
cards cached forms of all target instructions. Further
execution re-decodes each target instruction before
caching it. Thus, the simulator uses the latest ver-
sion of each instruction any time real hardware would
use the latest version.

However, simulators are often needed where the
best case is not available. Many architectures lack
coherency primitives. In other cases, primitives
have been circumvented using faster application- and
platform-specific code that works reliably on specific
platforms, but which does not work on a straightfor-
ward simulator. Thus, an important obstacle to effi-
cient simulator implementation is detecting instruc-
tion space modification.

Finally, there is a growing use of dynamic linking,
just-in-time compilers, debuggers, and so on. At the
same time, some of today’s most common hardware
lacks coherency primitives. Thus, coherency issues
are an ongoing concern, not simply “legacy” problems
which will soon go away.

This paper focuses on efficient detection of in-
struction space modification. Section 2 describes
some of the many uses of instruction-space modifica-
tion. Section 3 describes primitives provided by some
architectures and platforms, as well as some non-
compliant coherency strategies. Section 4 describes a
generic caching simulator and considers general dif-
ficulties and opportunities in detecting instruction-
space modification. Section 5 describes specific im-
plementations. Finally, Section 6 concludes.



caller: push arg0 /* Call foo(arg0) */
call DLTEO7=/ / \ \X\
(a)
DLTEQ7: set DLTEQO7 —rl  set DLTE07 —rl  set DLTE07 —rl  set DLTE07 —rl
+4: br  dylink br  dylink sethi Hl(foo) — r0  sethi Hl(foo) — r0
+8: nop jmp  r0+LO(foo) jmp  r0+LO(foo) nop
dylink: .. find and install routine foo; put address of foo in r2 ...

or "jmp r0+L0(”, LO(r2) — 3
st  r3—rl+8

call coherency r1+8

or  "sethi HI([ ?]) — r0", HI(r2) — r3
st r3—=rl44

call  coherency r1+4

jmp r2

/* Form jump to foo */

/* Install in DLTE */

/* Propagate to instruction caches */
/* Setup for the jump to foo */

/* Install in DLTE */

/* Propagate to instruction caches */
/* Jump to foo */

Figure 1: A dynamically-linked call to foo(), showing a dynamic link table entry (DLTE) being updated.
Initially, (a), it invokes the dynamic linker dylink. During update, (b), the entry is still a valid call to the
dynamic linker, so that concurrent calls see a valid instruction sequence and call the dynamic linker. In the
final form, (c) the DLTE has been updated to call the dynamically-linked routine. The dynamic linker must
perform instruction cache coherency, “call coherency r1+8”, to ensure that the jmp instruction appears in the
instruction stream before the sethi. Otherwise, the sequence (c¢) could be written to memory but the invalid

sequence (d) might be executed from the cache.

2 Code Modification Uses

Instruction-space modification can affect a single bit
in an instruction, or may replace gigabytes of code.
An instruction may modify itself, another instruction
in the same process, or instructions in some other
process. Unfortunately, no simulator techniques work
well for all uses, and simulator techniques which work
especially well in certain cases tend to work very
poorly in other cases. Thus, a clear understanding of
how instruction-space modification is used can help
lead to an efficient simulator implementation.

One use of instruction space modification is allocat-
ing new chunks of code. Code may be read in from
secondary storage, or code which is already loaded
for one process may be mapped so it is shared with
another. In both scenarios, instructions are typically
added to a process without removing any others, and
instructions are immutable and remain valid as long
as the program is executing. At a system level, these
uses often change page mappings, which in turn typi-
cally means updating the translation lookaside buffer
or TLB before they are valid.

Another common use is generating new chunks of
code. Such uses involve writing instructions, rather
than reading them in. Systems often generate dozens
to millions of instructions at once. The instructions

are typically write-once, but often the memory is re-
claimed, and new instructions are written to the same
locations. Typically, instructions are valid for a long
time; are used many times; are discarded rather than
being modified; and are discarded as a block, so if
one instruction in a sequence becomes invalid, all in-
structions in that group are invalidated together.

Finer-grained changes may change one or a few in-
structions in a sequence. For example, a dynamic
linker may use a set of stubs. The first time each
stub is invoked, it branches to the dynamic linker.
The dynamic linker resolves the callee and patches
the stub to branch directly to the callee. An example
is shown in Figure 1. In some settings, a fragment
may be updated repeatedly during its lifetime.

Very fine-grained modification may change part of
an instruction. For example, on register-constrained
machines it is common to write a value to the im-
mediate field of a following instruction rather than
saving the value to memory then later reloading it.
Such usage is shown in Figure 2. The instruction
may be written once and used repeatedly, or may be
modified every time it is executed.

Some memory regions are used in particular ways.
For example, many systems use stack memory al-
ternately for data and for code generated by Bit-
BLT [PLR85, Loc87, FvDFH90].



sub 0 < rl1,r2 sub 10 < rl1,r2 sub 0« rl,r2
st r0 — 18[gp] st r0 — (OFFSET(X))[pc]
add r9 < r0,r8
Id  r0 « 18[gp] add 19 « r8.X{?]
add r9 « r0,r8
a b c

Figure 2: Code that generates, then uses a value. In (a), there are plenty of free registers, and the value is
simply held in a register. In (b), there are insufficient registers, so static code saves, then reloads the value.
In (c), the value is saved as an immediate of the instruction that consumes the value. Although doing so
takes space in the instruction stream, the value is prefetched and used without an explicit reload.

The “actor” which modifies an instruction may also
vary. Cross-process patching is common. For exam-
ple, debuggers often implement breakpoints by re-
placing a debuggee instruction with a trap instruc-
tion. Some dynamic linkers are similar, with the
patching of Figure 1 done by the operating system
rather than a user-space dynamic linker. The actor
may be in the same process, but may be in a differ-
ent module or procedure. Or, the actor may be in the
same sequence of instructions, as in Figure 2, where
one instruction writes an immediate to a later in-
struction. In extreme cases, an instruction may self-
modify, changing itself as it runs, so that subsequent
invocation of that instruction will behave differently.

Usually, instruction changes must be propagated
quickly to ensure the system executes the most recent
version of the instructions. Sometimes, it is only nec-
essary that the change is recognized eventually. For
example, if the dynamic linker in Figure 1 is idem-
potent, the initial code may be executed repeatedly
with only a loss of performance.

Sometimes, changes can take effect too soon. One
application intentionally corrupted a following in-
struction. It relied on the instruction having al-
ready been prefetched, so that the unmodified ver-
sion would always be executed. The goal was to
complicate reverse-engineering: single-stepping the
program would flush the prefetch and thus execute
the corrupted instruction. Unfortunately, processors
and simulators with stricter coherency also executed
the corrupted instruction and the application would
fail [Col95]. Another scheme relied on similar behav-
ior to discover the processor model [Lei93].

Some code relies on atomic updates of the instruc-
tion stream. For example, code in Figure 1 may be
executed concurrently by several threads. It is cor-
rect if sethi has been written yet the older br gets
executed; it is an error to execute some bits from one
instruction and some bits from the other. Some code
relies on atomic update of groups of instructions. For
example, Figure 1 can omit “call coherency r1+8” if

entries at +4 and +8 are always on the same cache
line. But simulators that cache individual instruc-
tions may execute the illegal sequence in Figure 1(d).

Readers should note that there are many variations
on the above themes [Kep96], but most workloads on
most platforms use just a few. Thus, part of simula-
tor design and development is measuring and analyz-
ing actual workloads in order to choose appropriate
coherency implementations.

3 Coherency Primitives

There are many different architectural and/or plat-
form primitives used to indicate changes to the in-
struction space. In addition, some primitives are
expensive, so some applications use custom routines
which work on selected platforms but which do not
work across all members of the family. Unfortunately,
these custom routines rarely work on straightforward
caching simulators. A further complication is that
primitives are often ill-specified or the actual behav-
ior does not match the specification [Kep96].

Long ago, few processors used any sort of instruc-
tion caching. Therefore, any instruction l; could
modify any other instruction, |, and the proces-
sor would reliably execute the modified version of
l,. However, pipelines, prefetching, instruction and
data caches, write buffers, and other such structures
may hold unmodified forms of an instruction indef-
initely. Thus, many processors have explicit primi-
tives to ensure that modified code is propagated to
all relevant caching structures. Each change to the
instruction space must also call the primitive to en-
sure the change is executed correctly.

Along with the primitives is a coherency model.
Code modification usually starts with a write event,
typically a store. Most models require a separate tar-
get coherency event before they guarantee the next
erecute event for an instruction will execute the new
value instead of the old “stale” value.



Different systems have a wide variety of primi-
tives [Kep91, Kep96]. Primitives include special in-
structions, reads or writes of special registers, copro-
cessor commands, special traps, calls to special rou-
tines, and so on. Primitives may depend on both the
processor and the system platform: some caches are
integral with the processor, while others depend on
support chips, the system board, and so on. Primi-
tives may also depend on the operating system and
on run-time configuration of the hardware resources.

Some examples demonstrate the range of primi-
tives. One common coherency primitive is simply an
indicator that “coherency is needed”. Such primi-
tives are common on machines with small instruc-
tion caches that are refilled from a coherent source.
A more sophisticated primitive indicates a region of
change. Often, the region is an aligned block such as
“32 bytes starting at a 32-aligned address”. Other
primitives indicate a base and length of coherency.

Coherency running times vary greatly. For exam-
ple, the SPARC iflush instruction signals coherency
on an aligned fixed-size region. Although iflush is
guaranteed to work on all SPARC processors, some
implementations may complete in just a few cycles,
while platforms with off-processor caches may trap
and run tens of thousands of instructions. Thus, us-
ing iflush to ensure coherency of a large memory re-
gion may be cheap or may be quite expensive.

Primitives vary greatly, and some require privi-
leged operation. Therefore, many operating systems
provide abstract interfaces that work with any un-
derlying implementation. Simulators can discover
instruction space modification using platform primi-
tives, abstract interfaces, or both.

Some applications bypass the provided primitives
because they are slow compared to what is possible
with custom code. For example, some applications ef-
fect coherency of a modified instruction by executing
another instruction which maps to the same line in
a direct-mapped cache [Kep96]. Such “coherency by
code placement” may be an order of magnitude faster
on hardware, but simulators have trouble recognizing
such use as instruction space modification, especially
because coherency is effected using ordinary instruc-
tions. Thus, every instruction is potentially being
executed in order to effect coherency.

Some platforms update caching structures implic-
itly. That is, there is no explicit coherency primi-
tive. Instead, the processor provides a guaranteed
constraint. For example, many members of the IA-
32 processor family have a 16-byte prefetch. The pro-
cessor guarantees it will execute a modified instruc-
tion provided that the instruction write is followed
by a branch or at least 16 bytes of other instruc-
tions. Newer IA-32 processors have special hardware
to force coherency, and appear as if there were no
prefetching or pipelining at all [Kep96].

Some instruction-space modifications rely in part
on changes to the processor’s address mapping.
Therefore, simulators may need to track the pag-
ing structures. For example, virtual address 0x1000
may initially map to instruction A at physical ad-
dress 0x4000, then be remapped to B at 0x5000. Al-
though no memory values have changed, the instruc-
tion space has changed, and any values cached with
the tag 0x1000 must be made coherent.

Finally, note that some applications “happen” to
work on a given implementation, but are actually
buggy with respect to the hardware coherency model.
Thus, a simulator or hardware may correctly imple-
ment the coherency model but still be unable to run
some applications (see “tunable discard”, §5.3).

4 Caching Simulators

Conceptually, instruction-set simulators operate by
repeatedly reading the current machine instruction,
decoding it to determine what it “means”, then per-
forming the effect of that instruction. Decoding is
often the most expensive part. Fast instruction-set
simulators often cache a decoded form of instructions
so repeated decoding may be avoided.. For this dis-
cussion, static-translation simulators [Fla94, CK95,
CHH198] count as “caching” simulators.

Figure 3a shows sample code for a decode-and-
dispatch simulator. It fetches and decodes each in-
struction on each execution. Figures 3b and 3c show
sample code for a caching translator. Figure 3b
shows the common case, in which the target program
counter maps directly to a decoded handler. Fig-
ure 3c shows the cache miss case, where the cache is
reloaded by fetching and decoding an instruction.

Caching can reduce decode costs, but it also intro-
duces coherency problems: when a target instruction
is modified, the simulator must execute the modi-
fied version rather than the unmodified original. The
simulator in Figure 3a always fetches and decodes the
latest version of the instruction, but the simulator in
Figures 3b and 3c only fetches and decodes the in-
struction on a cache miss.

For example, suppose address 0x40 initially holds
instruction 0x54ea340c which is an add. When the
simulator executes that instruction, it loads cache
with the association {0x40, sim_add}. Later, the ap-
plication overwrites 0x40 with a branch. However,
as long as the original association stays cached, the
simulator executes sim_add instead of sim_br. Bet-
ter caches can give higher simulator performance but
may also hold more “stale” instructions.

Therefore, caching simulators typically must do ex-
tra work to detect code modification. In the sim-
plest case, the target processor or platform provides
a coherency primitive to ensure coherency of hard-



loop { loop { xlate (vs) {
i = fetch (vs.pc) h = find (cache, vs.pc) i = fetch (vs.pc)
h = decode (i) if (!h) { h = xlate (vs) h = decode (i)
(*h)(vs) save (cache, h, vs.pc) } return h
} (*h)(vs) }
}
a c

Figure 3: Common simulator implementations. Fragment (a) is a decode-and-dispatch simulator. Instruc-
tions are fetched and decoded every time they are executed. Decoding resolves to a handler, h, which
simulates the effect of the instruction, updating the virtual (simulated) state vs. Fragments (b) and (c) show
a caching simulator. Each mapping from an instruction address vs.pc to a handler is saved in cache. In the
common case, fetch and decode are skipped. Mappings for a given vs.pc are created by calling xlate().

ware caches; applications use that primitive; and the
primitive is a good match to the simulator. For ex-
ample, the SPARC provides an iflush instruction that
performs coherency of a 32-byte region whose virtual
address is in register a0. Simulators can implement
iflush by discarding decoded instructions for that ad-
dress range. The simulator of Figure 3b, for example,
might clear all mappings from cache which are tagged
with an address in the 32-byte range starting at a0.

More complicated situations have a poor match
between the target, target workloads, the coherency
primitive, and the simulator. For example, Shade
is a SPARC simulator that generates and caches
host-code translations of target-code sequences. The
translation cache can be searched by virtual address,
but some reachable translations cannot be found by
the search [CK93]. Therefore, Shade implements
iflush by discarding all translations, not just those
near the address in a0. The strategy works well
provided that iflush is used rarely. When iflush is
used frequently, Shade discards many valid transla-
tions. Translations are re-created when they are next
needed, but re-creation overhead slows simulation.

Sometimes, simulator caches are invalidated with-
out executing a store. For example, caches may be in-
validated when base registers change [May87] or when
page mappings change [MW94].

Finally, note that an emulator is a simulator with
hardware support [Tuc65]. Such support may speed
coherency. For example, with multiple write-protect
bits per page, one bit can implement normal write
protections, and the others trap writes to locations
for which there are translations [KCW01, BAG102].

5 Simulator Implementations
A simulator may implement coherency using any

strategy that makes sense. An instance of code mod-
ification usually consists of a target instruction write

event; a target coherency event if the target supports
it; and a target instruction execute event. A caching
simulator has internal events when it reads and caches
instructions, and when it dispatches to and executes
code that implements a decoded instruction.

Efficient detection of instruction-space modifica-
tion typically depends on recognizing key modifica-
tion events, then mapping those events on to details
of the simulator implementation. A simulator may
use any, all, or none of the events to detect and im-
plement instruction-space modification. It may also
use events in an “unintended” manner. For exam-
ple, a simulator may use the target coherency event
to mark which items need coherency, but defer ac-
tual coherency until the next execute event. Finally,
a simulator may may switch between several strate-
gies, each tuned to different uses.

In researching various strategies, it may be use-
ful to study the sequence of operations performed by
hardware or a non-caching simulator and compare
that against the caching simulator. Such a compar-
ison often highlights which events are weakened or
removed by the caching simulator, and can thus help
point to an appropriate solution.

Consider, for example, simulating target locations
A, B, C. Figure 4a shows a trace of operations per-
formed by a decode-and-dispatch interpreter. No-
tably, the simulator decodes A every time it is ex-
ecuted. If A is executed, changed, then re-executed,
the simulator will re-decode A when it is re-executed,
and thus will correctly notice changes to A.

Figures 4b and 4c show operations performed by
a caching simulator. emit saves away the result of
the decode without actually executing it. Figure 4b
generates Figure 4c, so all operations in Figure 4b
are executed before any in Figure 4c. If locations A,
B, C are re-executed, Figure 4c is reexecuted directly
without re-executing Figure 4b.

How can we modify a caching simulator to de-
tect instruction space modifications? One solution is



fetch A fetch A fetch A
decode A decode A A # Agaved = regenerate
t = vs.regA emit Anost t = vs.regA t = vs.regA
u = fa(t) u = fa(t) u = fa(t)
vs.regB = u vs.regB = u vs.regB = u
vs.pc += 4
fetch B fetch B fetch B
decode B decode B B # Bgaved = regenerate
t = vs.regB emit Bpogt
u = fg(t) u' = fg(u) u' = fg(u)
vs.regC = u vs.regC = u’ vs.regC = u'
vs.pc += 4
fetch C fetch C fetch C
decode C decode C C # Cgaved = regenerate
t = vs.regC emit Cpost
u = fc(t) u” = fe(u’) u” = fc(u”)
vs.regD = u vs.regD = u” vs.regD = u”
vs.pc +=4 vs.pc += 12 vs.pc += 12
dispatch dispatch dispatch
a b c d

Figure 4: Operations performed by various simulators while executing locations A, B, C. Code (a) fetches,
decodes, and simulates every instruction on every execution. Code (b) fetches and decodes instructions, then
emits (c), which simulates the instructions. Note that (c) runs without fetching or decoding: when A, B, C
is re-executed, only the operations in fragment (c) are repeated, so changes to A, B, or C go unnoticed. Code
(d) is like (c), but it fetches and compares each instruction against the value when the sequence was created.
If any have changed, the sequence is regenerated. Each f; corresponds to a specific value of h in Figure 3.
The dispatch operation finds the next sequence to execute; it corresponds approximately to Figure 3b.

shown in Figure 4d: the generated code is augmented
to fetch each instruction and compare the current
value against the value of the instruction when the
code was created [May87]. Executing the instruc-
tions NV times thus causes the instruction to actually
be fetched N + 1 times. But where comparing is
cheaper than decoding, the overall cost of Figures 4b
and 4d can be less than that of Figure 4a.

Following sections describe coherency alternatives
in more detail. Section 5.1 describes basic techniques.
Sections 5.2 and 5.3 describe ways to tune or combine
techniques for better performance in specific situa-
tions. The techniques are described in terms of tar-
get code, but external agents such as debuggers, I/0,
etc. are similar.

5.1 Basic Techniques

Interpret — No Cached Form Simulators may avoid
coherency problems by avoiding cached forms, but
performance tends to be worse. For example, Spa is
an interpreter for a straightforward target that runs
on an identical underlying host. It is coded in assem-

bly and requires about 40 instructions to simulate
each instruction [Irl93]. Shade is a caching simula-
tor; in similar use, it is often an order of magnitude
faster [CK94]. Thus, removing the cached form al-
together may be unacceptable, but avoiding caching
in certain situations may solve coherency problems
while still giving good performance for common use.

Discard A simulator may generate and execute a
decoded form, then immediately discard it [CK94].
The effect is similar to interpretation, but may be
simpler to implement given an existing translator.
Generating code is typically slower than interpret-
ing, so discard performance is usually worse. Sev-
eral instructions may be translated together, so care
is needed to maintain dependencies. For example,
failures can occur translating more than 16 bytes
on an TA-32 (§3); past writes of S/370 base regis-
ters [May87]; past execute [Bro60, May87] or iflush
instructions; and so on.

Target Coherency Primitive For systems which
have and use a target coherency primitive, use the
primitive to mark or discard all of the cached form
which might cover the indicated region. Some tar-



get primitives indicate incoherency, but do not say
what is incoherent. Thus, straightforward use of such
primitives may lead to excess invalidation, because all
cached information is discarded, not just the portion
which is incoherent.

Mutator Checking Code does not change by it-
self; some agent must change it. Executing such mu-
tators can signal simulator coherency. It is generally
hard to determine which instructions change other
instructions, but identifying specific cases can be use-
ful [Hay94].

Tag Checking Cached forms are tagged. Most
systems tag by instruction address, so coherency can
compare addresses. For example, a store address can
be compared against addresses which have cached
forms; the address of the next-to-execute cached form
can be compared against addresses of prior memory
writes; or the address of the current target instruc-
tion may be compared against known mutators. Note
that checking all stores may be expensive in general,
but some cases may be handled quickly. For exam-
ple, code write checks may be integrated with other
page write checks [MW94]. Other tags include ad-
dress spaces, timestamps, and so on.

Value Checking Stores cause incoherence by
changing values with a cached forms. Thus, co-
herency can be signaled by looking for value changes.
For example, a simulator can record the value of
memory when a decoded form is cached; when the
decoded form is executed, it compares the saved and
current values of memory. If the values differ, co-
herency is needed. Value checking saves the origi-
nal target instructions, and may read both saved and
current instruction values as data each time a target
instruction is executed [May87, DGB*03]. Thus, ex-
ecution overhead and memory pressure can be high.

5.2 Optimization Strategies

None of the above techniques excels in all settings.
However, most schemes can be tuned to a particular
situation. This section describes several general opti-
mization hints [Lam84, Kep93], applied to coherency.

Beware that optimization typically risks several
problems. First, performance depends on choosing
the right optimization; the wrong one may make
performance uniformly worse. Second, common-
case costs are usually improved at the expense of
uncommon-case costs, so optimization may make
some workloads faster but others much slower. Third,
available performance improvement is limited by the
cost of choosing a given strategy, as well as the cost of
the strategy itself. Fourth, some schemes incur addi-
tional space costs, and using several schemes together
usually incurs further space costs. Space cost over-
heads can include data cache costs, instruction cache
costs, paging overheads, write buffer stalls, and so

on. Fifth, caching optimizations can introduce their
own coherency problems. Sixth, using several imple-
mentations increases the risk of bugs at the same time
that it reduces the coverage of any given implementa-
tion. Thus, using several implementations may lead
to reliability problems and dramatically increased de-
velopment time and costs.

Be Conservative Sometimes it is expensive to be
precise If coherency is conservative, it often need not
be exact. For example, any write to a page might
force coherency for the whole page. Beware that con-
servative approaches may lead to problems like false
sharing, where operations near a cached form do not
cause coherency problems, yet incur the same cost as
operations on an actual cached form.

Speculate Coherency can be performed specula-
tively, anticipating a need. For example, the first
write to a page speculatively discards all cached forms
for that page, so further writes to the page can omit
coherency until subsequent execution from the page.

Stage A given instance of code modification is
composed of many events (Section 5). The handling
of coherency may be staged across multiple events.
For example, it may be cheapest to mark coherency
when a target coherency primitive is executed, but to
defer actual coherency until the cached form is used.

Be Lazy Defer operations or parts of operations
to minimize up-front cost and maximize the number
of things that are checked together. For example, at
a write event, record the address of a potential inco-
herency; at a target coherency event, record the ad-
dress of an expected coherency; at an execute event,
implement coherency on just those locations which
were both changed and expected to be coherent.

Cache Caching can make common operations fast.
For example, it may be expensive to check if a write
touches any interesting page. If a write usually
touches the same page repeatedly, it may speed the
common case to first compare against the last page
touched. Beware of coherency issues.

Combine With Other Operations Some co-
herency checks can be combined with other simulator
operations so that a single operation checks several
conditions simultaneously. For example, write checks
for page protection and coherency may be combined;
or, tests for dispatch and coherency may be com-
bined. When combined tests fail, perform separate
tests to determine the root cause.

Compose Some operations are best built using
several cooperating strategies. For example, the re-
fetching implementation of Figure 4d combines in-
terpretation and translation, but it only performs
those parts of interpretation which are needed to al-
low translation to operate correctly.

Use a Hierarchical Implementation If a cheap
operation is sometimes inadequate, try the cheap
form first and fall back on the more expensive. For



example, first check if an address is in read-only mem-
ory; test for value changes only in writable memory.

Use Host Hardware It may be possible to use
cheap host operations to implement parts of co-
herency. For example, write-protect target pages
with cached from, then load the host TLB [RHWG95]
with the lesser of target and simulator write enables,
thus making common write checks go faster.

Hybridize Use several cheap strategies instead of
one expensive one. For example, use page-level checks
outside of the stack segment, where false sharing of
code and data should be rare, and use fine-grained
checking or interpretation for code in the stack seg-
ment, where false sharing is likely.

Adapt Change strategies while executing. Three
general adaptive strategies are to deoptimize, to re-
optimize with new assumptions, or to choose among
several specialized implementations [Kep96]. For ex-
ample, a simulator may default to cheap page-level
coherency, but if coherency operations are frequent,
it might switch to a finer-grained strategy with more
expensive checking but lower overall coherency costs.
Adaptation typically requires ongoing measurement
to determine when and where adaptation is required.
Thus, there is often measurement overhead. Also, it
may be impossible to measure exactly, so measure-
ment error needs to be considered in choosing adap-
tation thresholds. Note that adaptation may “hunt”,
continually trying new strategies, but never settling
on one. Thus, adaptation can sometimes lead to
worst-case performance as it both chooses bad im-
plementations, then also pays the cost of adapting.

Approximate Real systems crash; faulty approx-
imate solutions may be “good enough” if they fail
much less often than the overall system. For example,
approximate value checking by computing and com-
paring checksums or CRCs instead of actual values.
Use the size of summarized value, the summarizing
algorithm, and a plausible/conservative write rate to
compute the odds that a write produces a different
exact value but the same summary value. Use ap-
proximation only if it is much more reliable than the
overall system failure rate.

Phase Divide execution into phases and keep a
virtual timestamp to indicate system or implementa-
tion behavior. Comparing against a timestamp may
be cheaper than other tests. For example, a system
which tracks writes may note the “time” of the last
write to a page. Newer cached forms are, by defini-
tion, coherent and need no further checking.

Pool/Aggregate/Cluster Some policies work best
if like things are considered together. For example,
cached locations with especially high or low modifica-
tion rates may be considered together so that thresh-
olds or adaptation rates can be adjusted to reflect
system usage rather than that of an isolated location.

Specialize Rather than solving the general prob-

lem, solve a specific problem well. If necessary, adap-
tively change the kind or degree of specialization. For
example, instead of solving the general problem of de-
tecting coherency by code placement (§3), focus on
solving the particular placement code known to ap-
pear in a particular workload. Similarly, FlashPort
simulates a target code generator by creating and in-
stalling new host code. Doing so simplifies detection
of code changes, and allows use of fast host code gen-
erators tailored to the specific use [Hay94].

Tune A simulator can implement various mecha-
nisms and allow the user to tune the implementation
by selecting between mechanisms or providing their
own [Kep93]. Choices include correct mechanisms
with differing performance characteristics, and mech-
anisms that are correct in some situations but which
fail in others. For example, Shade provides a slow-
but-correct strategy for executing applications which
omit a required iflush (see “tunable discard”, §5.3).

Undo Save incoherent versions of the cached form
and the conditions for which it is valid. When pos-
sible, requalify the form and reinstate it, rather than
recreating it. For example, Mimic caches multiple
translations corresponding to different values of the
execute register; checking to requalify a fragment is
typically much faster than recreating it [May87].

Finally, note that many of the techniques described
here are commonly used for implementing program-
ming languages. The overlap is not coincidence: ma-
chine code is simply another programming language.
Many techniques apply broadly, so studying other
programming systems may provide hints about how
to improve simulators.

5.3 Specific Implementations

This section describes in more detail several exist-
ing and hypothetical coherency schemes, in order to
highlight tradeoffs.

Target Coherency Primitive In g88, target in-
struction cache invalidation primitives cause the cor-
responding threaded code to be replaced with a
pointer to a primitive which re-decodes the invali-
dated instructions [Bed89].

Target Coherency Primitive, Conservative
Shade translations are variable-size, making it hard
to identify which translations contain a given ad-
dress. Also, translations “fall off” of the indexing
data structure, making them hard to discover, yet
they may be reached by chaining from other transla-
tions (§4). Thus, Shade implements the target iflush
instruction by discarding all translations [CK93].

Tunable Discard The SPARC architecture defines
a target coherency primitive, iflush. Some older ap-
plications fail to use iflush, yet ran on older SPARC
hardware [CK93]. Shade has a command-line option
that instructs Shade to generate then discard trans-



lations for code outside of the read-only text seg-
ment [Cme93]. Discarding code is potentially expen-
sive, but works well in practice because most time is
spent executing from the read-only text segment.

Undo Value Checking Tag the code generated for
each use of the execute instruction. If an instruction
reappears, the cached form is revalidated using a sim-
ple comparison, which is cheaper than generating new
code. Typically, few distinct values are used for any
given application run [May87].

Instruction Address Checking When a mutator
(85.1) can be identified, a simulator can implement
coherency based on executing target instruction ad-
dresses. Such “bracketing” is only guaranteed correct
if all mutators of a fragment can be identified. Thus,
it may be desirable to use a hierarchical approach,
with a slower conservative strategy to catch the cases
missed by the faster bracketing mechanism.

Composed Caching and Interpretation Where
instruction changes are frequent but limited in scope,
use fast cached execution for slow-changing parts,
and interpretation for frequently-changing parts. For
example, in Figure 2c, only the immediate varies from
invocation to invocation. Thus, the add can be pre-
decoded, but the immediate interpreted [DGB*03].

Conservative Value Checking Value checking can
examine just the bytes which make up the cached
form, but using larger regions can reduce storage and
checking costs: one test can cover several instructions
and code can be tuned for fixed-size chunks. Disad-
vantages include false sharing overheads.

Hierarchical Dispatch-Time Value Checking
Straightforward value checking performs a load, com-
pare, and branch for each use of each instruction.
Consider checking only when the target cache is filled.
For example, some targets have direct-mapped caches
and ensure code A is coherent by executing some
other code B that maps to the same cache loca-
tion [Kep96]. A simulator can use a map with the
same structure as the hardware cache; the simulator
performs value checking only when the map misses.

Conservative Write-Time Checking Straightfor-
ward write-time checking can be expensive because
each simulated write requires a lookup on the cached
form. A simulator can instead “bin” memory and
blindly discard any cached form which falls in the
bin of a store. False sharing may increase re-decode
costs, but writes are so frequent that the cost of pre-
cise write checks may be higher.

Hierarchical Host/Software Testing Often, a
host MMU can map target memory [RHWG95] so
pages with a cached form will trap on write. However,
many MMUs map only part of the address space.
Also, simulator pages must be accessible to the simu-
lator but invisible to the simulated target. Thus, each
application access may be “guarded” with a software
range check. Usually, target accesses touch locations

mapped by the MMU, and will thus go fast.

Hierarchical Write Checking and Execution-
Time Undo Each write conservatively removes
cached forms from the corresponding bin in a fast
map and places them on a slow list. Misses in the
fast map check the slow list. Hits in the slow list are
requalified: those which pass are reinstated in the
fast list, while those which fail are either discarded
or kept for later requalification [DGB*03].

Hierarchical Write-Time/Execution-Time Ad-
dress/Value Checking Each write sets a flag in a
map; each time a cached form is executed, it polls
the corresponding flag. If set, the cached form is re-
qualified. With one bit per instruction, the scheme is
accurate; with several per bit it is conservative.

Hybrid Adaptive Interpretation Sophisticated
pre-decoding can yield high asymptotic performance,
but may be expensive where code changes are com-
mon. The simulator can try a sophisticated approach
but also track usage and costs. Where too expen-
sive, the simulator selects successively cheaper but
asymptotically slower forms of pre-decode, eventually
switching to interpretation [DGB*03].

6 Conclusions

Fast instruction-set simulators can perform many
useful functions such as cross-machine simulation,
data collection for performance analysis, and sophis-
ticated debugger features. To do so, the simulators
must be fast. Caching techniques help simulators
go fast, but target workloads use dynamic instruc-
tion space modification, which then violates caching
assumptions. This paper has presented approaches
which help maintain the benefits of caching, while
extending the workloads which can run on those sim-
ulators. There are many approaches and no clear
winner, but the wide variety of approaches provides
the simulator writer with a good set of tradeoffs and
thus good performance across a variety of workloads.
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