How to Detect Self-Modifying Code
During Instruction-Set Simulation

Pardo

AMAS-BT 2009

Helped invent & build two significant simulators

Shade
Crusoe

Also: studied and written lots of SMC
Lots!

Maybe: something interesting to say

Everybody knows
Self-Modifying Code is dead

But: SMC is alive and well (alive and still sick?)
Dynamic linking, JITs, debuggers, ...
Instruction Space Changes (1SC)

Demand paging - reuse code pages
Memory remapping

"SMC is everywhere”

Rare: expensive” is okay
Frequent: "expensive” is slow
s slow okay? Depends on requirements

How slow?
Many forms of SMC: "no silver bullet”

Code and writable data interleaved
Fine-grained JIT
Instruction patching

Immediates, opcodes, registers, ...

Easy solution: interpret everything
Decode every time — see every change
Slow...

Fast and almost easy:

Translate, don't handle SMC/ISC
Many workloads won't run

Fast and handle SMC/ISC:

Some cases: almost easy
General case: hard... but almost possible!

_Instr = fetch(pc)
Interpreter: = decode(instr)

execute(h)
Decode is slow, [} qp e 1ookup(e)
h = cache.save(pc, decode(fetch(pc)))
so cache: execute(h)

Avoids "fetch” and "decode” except on miss

But:
What if the instruction changes?
What if the PC mapping changes?

Write-protect pages during decode
Discard on writes to protected pages

decode:
protect(page, READONLY)
return translate(fetch(pc))

write fault:
If (vs->protection[page].readonly)
...Simulate write fault...
else
cache.discard(page, page+PAGESIZE)
mprotect(page, ~READONLY)
restart

Works great in many cases: paging, JIT, ...

Application malloc()'s code wite ---> data
Page has both code anddata ~ ---------

write IS SlOw: code

Trap

Discard valid translation of code

Make page writable, perform write

Next use of code: make read-only, retranslate

Sometimes so slow it dominates running time
If code writes data: complicated infinite loop

Also slow for:

Recompile every 10K instructions
e.g., BitBlt()
Frequent instruction patching

Register numbers, instruction immediates
Debugger watchpoints

Other fast-changing SMC “styles”

| have seen these in commercial workloads...

General strategies

Reoptimize: handle the "new” case fast
... but no longer handle "old” case
Deoptimize: handle both cases

... but both cases are slower

Keep multiple "fast” cases + dispatch
... but "dispatch” overhead

Often works

Instruction events:

Write/map event
Coherency event (maybe)
Execute event

Simulator events:
_ookup

-etch
Decode

Dispatch
Execute

x86 (and others): no primitive
Need to detect what changed
Platform "primitive” for instruction coherency

Iscp
iflush32 ADDR
coherency(base, length)
ISCP: "something changed”
Poor match between application and simulator

Need to detect what really changed

Default: write-protect on translate, fault on write

-aults are expensive, so...
After too many” faults, try another strategy

Asymptotically slower, but avoids faults
After "a while” try default strategy again

translate:
t->original = copy(pc, length)
t->code.emit(CHECK, t->original, length)
t->code.emit(TRANSLATE, pc, length)

translation_1234:
If (miscompare(pc, ORIGINAL, LENGTH))
return FAIL
... Simulate

Polls for coherency

2X slower than write-protect — usually avoid
No READONLY faults

Faster on fault-prone code
Adaptive: gets used only on fault-prone code

Self-checking avoids write faults

Avoids discard of "good” translations
But: need to retranslate all true code changes

Frequent changes — high retranslation cost
Other strategies:

Trade off: faster translator, slower code
Knob? Multiple translators?

Save "invalid” fast code, see if it reappears
Many SMC patterns have just a few values

Same as before, but...
On self-check failure, save the "bad” translation
And: before translating

Scan "bad” translations
"Revalidate” if memory now matches
Reuse translations that now work

"Revalidating” is cheaper than retranslating

Almost

Good: more applications run fast
Bad: some are still slow
Why: details of SMC/ISC usage

E.g., some cases of instruction patching

Lots of values for instruction immediates
No reuse of earlier translations

Is it okay if some workloads are slow?

Depends on your application

Simulates user-space SPARC on SPARC

Used for program analysis
Performance is "optional”
If it's slow sometimes, that's okay

Always translates, ~100I/l
SPARC: iflush ADDR signals coherency
Applications missing iflush:

User has to say, via command-line flag
Writable memory: "self-discarding” translations

Crusoe: commerical x86 CPU: Must be fast!

Default: protect on translate, discard on write

Translation: ~10,000 I/l. Avoid retranslation!

High fault rate, retranslate (subpage hardware):

Write: save translations, make subpage writable
Execute: reprotect, revalidate translations

If still high fault rates: retranslate self-checking

Se
Sti

f-check fails: retranslate: "fetch immediates”
| fails: retranslate: "call interpreter”

What was that about "avoid retranslation?”

No "best” strategy
Depends on the requirements

A few more notes:

Fetch instruction immediates
Translation that calls to the interpreter
Implements several past instructions

Check memory and dispatch accordingly
Multiple implementations and dispatch?
The translation is dispatching within itself

Bad: more implementations:
more bugs
Worse: more implementations:

worse coverage of each case

Adaptation can "hunt” endlessly

Cost to check and fall
Plus cost to adapt
Plus cost to execute

"Consistent” gets more important than “fast”
Sometimes a "slow” strategy is faster

SMC/ISC is an important and thorny problem

Many cases are in a big-enough workload set
Hard to solve well but:

Most cases "suitably” solvable

State clearly what you do and don't do
Why you want to read the paper:

More complicated SMC/ISC cases
More strategies

More examples of existing systems

29:
30:
31:
9:
10:
11:]
12: U

nacep P

14: S
15: A
l16: E

19: U
20: S
21: A

26:

N
wn
0 CcwpHdac

11

11
11

1N

O O O O O

22

o O

O O O O O O

H H H H H H FHF

H H H FHF

H H H H H H H H H HE

load ”"load [PC]1”

increment PC

goto top
save "load [PC]" -> 11
clear accumulator

*PC -> accumulator

"load [PC]":
save *PC

-> 22

check for branch...

not branch go to 19

branch:

fix "load PC";

clear accumulator

load vs->accumulator

execute *PC

save vs->accumulator
branch to 26 if positive
add -1/2 for negative
adjust copy(vs->accumulator)
save vs->sign

goto 9

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

