
How to Detect Self-Modifying Code During Instruction-Set Simulation

David Keppel amas-bt-2009@xsim.com

Abstract

The growing maturity and deployment of instruction-
set simulators highlights a need for efficient and cor-
rect simulation of all processor and platform features.
Many applications and operating systems change the
instruction space dynamically: dynamic linking, just-
in-time compilation, paging, and so on. Unfortu-
nately, no single simulator implementation works well
in all situations. This paper surveys general strate-
gies and specific solutions for efficient simulation of
instruction-space modification.

1 Introduction

Instruction-set simulators are used widely to allow
computers to run programs written for other comput-
ers, enable detailed performance analysis, and sup-
port sophisticated debugger features. A simulator is
most useful when it implements most features of the
target machine being simulated, and when it runs effi-
ciently on the host machine which runs the simulator.
The Shade papers [CK93, CK94, CK95] survey sim-
ulators, their uses, and implementation techniques.

Many systems use instruction-space modification.
Widely-used examples include dynamic linking, just-
in-time compilers, debugger breakpoints, and graph-
ics. Both operating systems and applications use it.
The granularity ranges from megabytes down to indi-
vidual bits in instructions. Changes may be one-shot
or may occur as often as every time the code is exe-
cuted. Keppel [Kep96] surveys many types and uses
of instruction-space modification.

Unfortunately, simulators often fail to implement
instruction-space modification, or run much slower
in order to implement it. Decoding target instruc-
tions is typically expensive, so fast simulators often
cache a decoded form of instructions. Caching al-
lows simulators to skip expensive decoding, but also
introduces a cache coherency problem: when an in-
struction changes, the cache may hold an old version

of the instruction, yet the simulator must execute the
newest one. Although specific coherency cases can be
efficient, the general case is difficult.

In the best case, a target provides a primitive for
signaling coherency, and both hardware and simula-
tor ignore instruction-space changes until the prim-
itive is invoked. For example, an architecture may
provide a cache coherency instruction inval. When
target code executes inval, the simulator discards
cached forms of all target instructions, so further exe-
cution re-decodes each target instruction before use.
Thus, the simulator uses the latest version of each
instruction any time real hardware is guaranteed to
use the latest version.

However, simulators are often needed where the
best case is not available. Many architectures lack
coherency primitives, including the widely-used and
commonly-simulated x86. In other cases, applica-
tions circumvent expensive primitives using faster
application- and platform-specific code that works
reliably on specific platforms, but which fails on a
straightforward simulator. Thus, an important ob-
stacle to efficient simulator implementation is detect-
ing instruction space modification.

Finally, there is continued use of paging, dynamic
linking, just-in-time compilers, debuggers, and so on.
Thus, coherency issues are an ongoing concern, not
simply “legacy” problems which will soon go away.

Multiple-processor systems have more complex co-
herency and concurrency/atomicity issues and are be-
yond the scope of this paper.

This paper focuses on efficient detection and imple-
mentation of instruction space modification. §2 de-
scribes some uses of instruction-space modification.
§3 describes primitives provided by some architec-
tures and systems, as well as some non-compliant co-
herency strategies. §4 presents a generic caching sim-
ulator and considers problems and opportunities de-
tecting instruction-space modification. §5 describes
specific implementations. Finally, §6 concludes.

1

2 Code Modification Uses

Instruction-space modification can affect a single bit
in an instruction, or may replace gigabytes of code.
An instruction may modify itself, another instruction
in the same process, or instructions in another pro-
cess. Unfortunately, no simulator techniques work
well for all uses, and simulator techniques which work
especially well in certain cases tend to work very
poorly in other cases. Thus, a clear understanding of
how instruction-space modification is used can help
lead to an efficient simulator implementation.

One use of instruction space modification is allo-
cating new chunks of code. Code may be loaded
from secondary storage, or code in one process may
be mapped so it is shared with another. In both
scenarios, instructions are typically added without
removing others, are immutable, read-only, and re-
main valid as long as the program is executing. At a
system level, these uses often change page mappings,
which in turn typically means updating the transla-
tion lookaside buffer or TLB before they are valid.

Another common use is generating new chunks of
code. Such uses involve writing instructions, rather
than reading them in. Systems often generate dozens
to millions of instructions at once. Instructions are
typically write-once, but often the memory is re-
claimed, and new instructions are written to the same
locations. Typically, instructions are valid for a long
time; are used many times; are rarely modified; and
are discarded as a block, so if one instruction in a se-
quence becomes invalid, all instructions in that group
are invalidated together. Overlays are similar.

Finer-grained changes may change one or a few in-
structions in a sequence. For example, a dynamic
linker may use a set of stubs. The first time each
stub is invoked, it branches to the dynamic linker.
The dynamic linker resolves the callee then patches
the stub to branch directly to the callee. An example
is shown in Figure 1. In some settings, fragments are
updated repeatedly during their lifetime.

Very fine-grained modification may change part of
an instruction. For example, on register-constrained
machines it is common to write a value to the im-
mediate field of a following instruction rather than
saving the value to memory then later reloading it.
Such usage is shown in Figure 2. The instruction
may be written once and used repeatedly, or may be
modified every time it is executed.

Some memory regions are used in particular ways.
For example, many systems use stack memory for
both data and for code generated by Bitblt [PLR85,
Loc87].

The “actor” which modifies an instruction may also
vary. Cross-process patching is common. For exam-
ple, debuggers often implement breakpoints by re-
placing a debuggee instruction with a trap instruc-
tion; on “continue” the debugger patches in the orig-
inal instruction, single steps, then re-patches the trap.
Some dynamic linkers are similar, with the patching
of Figure 1 done by the operating system or a sep-
arate linker process. An actor may be in the same
process, but in a different module or procedure. Or,
it may be in the same instruction sequence, as in
Figure 2, where one instruction writes a following
instruction. In extreme cases, an instruction self-
modifies, changing itself as it runs, so subsequent in-
vocation of the instruction behaves differently.

An “actor” that modifies the instruction space
need not be a CPU memory write. DMA can mod-
ify code via an asycnhronous I/O engine [BKKK03].
Addressing changes can change the instruction space
and may occur with e.g., register writes that change
addressing base registers or which enable or disable
paging [May87, MW94]. execute instructions fetch
from a register, not memory [Bro60, May87].

Usually, instruction changes must be propagated
quickly to ensure the system executes the most recent
version of the instructions. Sometimes, it is only nec-
essary that the change is recognized eventually. For
example, a dynamic linker as in Figure 1 is typically
idempotent to ensure safety for interrupts and mul-
tiprocessors. Thus, executing the initial or interme-
diate code repeatedly costs only performance.

Sometimes, changes can take effect too soon.
One application intentionally corrupted a follow-
ing instruction. It relied on the changed instruc-
tion being prefetched, so the uncorrupted version
was executed. The goal was to complicate reverse-
engineering: single-stepping flushed the prefetch and
executed the corrupted instruction. The application
was changed when processors with stricter coherence
were introduced [Col95]. Another scheme relied on
similar behavior to discover the processor model in
the absence of a CPU identifier [Lei93].

Some code relies on atomic updates of the instruc-
tion stream. For example, code in Figure 1 may be
executed concurrently by several threads. It is cor-

2

(a)

set DLTE07 → r1

br dylink

nop

(b)

set DLTE07 → r1

br dylink

jmp r0+LO(foo)

(c)

set DLTE07 → r1

sethi HI(foo) → r0

jmp r0+LO(foo)

(d)

set DLTE07 → r1

sethi HI(foo) → r0

nop

dylink: # ... find and install routine foo; put address of foo in r2 ...

or ”jmp r0+LO(?)”, LO(r2) → r3 # Form “jump to foo”

st r3 → r1+8 # Install in DLTE

call coherency r1+8 # Propagate (b) to instruction caches

or ”sethi HI(?) → r0”, HI(r2) → r3 # Setup for “jump to foo”

st r3 → r1+4 # Install in DLTE

call coherency r1+4 # Propagate (c) to instruction caches

jmp r2 # Jump to foo

push arg0

call DLTE07 s �������

�
�

��

A
A
AU

HHHHHHj
X

caller: # Call foo(arg0)

DLTE07:

+4:

+8:

Figure 1: A dynamically-linked call to foo(), showing a dynamic link table entry (DLTE) being updated.
Initially, (a), it invokes the dynamic linker dylink. During update, (b), the entry is still a valid call to the
dynamic linker, so concurrent calls see a valid instruction sequence and call the dynamic linker. In the final
form, (c) the DLTE has been updated to call the dynamically-linked routine. The dynamic linker must
perform instruction cache coherency, “call coherency r1+8”, to ensure that the jmp instruction appears in
the instruction stream before the sethi. Otherwise, the sequence (c) could be written to memory but the
invalid sequence (d) might be executed from the cache.

rect to execute the new sethi with the old br; it is
an error to execute some new bits and some old bits
from one location.

Code may rely on atomic update of groups of in-
structions. For example, Figure 1 can omit “call co-
herency r1+8” if entries at +4 and +8 are always on
the same cache line. But a simulator that caches in-
dividual instructions may execute the illegal sequence
in Figure 1(d).

Alternatively, code may rely on non-atomic up-
dates of groups of instructions. One coherency
scheme flushes the instruction cache once, then allo-
cates disjoint code fragments to disjoint cache lines,
thus allowing code creation and execution to be in-
terleaved without any coherency operations [Kep96].

There are many variations on these
themes [Kep96], but most workloads on most
platforms use just a few. Thus, part of simulator
design is measuring and analyzing actual workloads
to guide selection of coherency implementations.

3 Coherency Primitives

Long ago, few processors used any sort of instruc-
tion caching. Therefore, any instruction could mod-
ify any other instruction and the processor would
reliably execute the modified version. However,
pipelines, prefetching, instruction and data caches,
write buffers, and other structures may hold unmod-
ified forms of an instruction indefinitely. Thus, many
processors have explicit primitives to ensure modified
code is propagated to all relevant structures. Each
change to the instruction space must also call the
primitive to ensure the change is executed correctly.

Along with the primitives is a coherency model.
Code modification usually starts with a write event,
typically a store. Most models require a separate co-
herency event before they guarantee the next execute
event for an instruction will execute the new value
instead of the old “stale” value.

There are many different architectural and/or plat-

3

sub r0 ← r1,r2 sub r0 ← r1,r2 sub r0 ← r1,r2
· · · st r0 → 18[gp] st r0 → (OFFSET(X))[pc]

add r9 ← r0,r8 · · · · · ·

ld r0 ← 18[gp] add r9 ← r8,X: ?
add r9 ← r0,r8

(a) (b) (c)

Figure 2: Code that generates, then uses a value. In (a), there are plenty of free registers, and the value is
simply held in a register. In (b), there are insufficient registers, so static code saves, then reloads the value.
In (c), the value is saved as an immediate of the instruction that consumes the value. Although doing so
takes space in the instruction stream, the value is prefetched and used without an explicit reload.

form primitives used to indicate changes to the in-
struction space. In addition, some primitives are ex-
pensive, so some applications use custom routines –
which work on selected platforms but which do not
work across all members of the family. Unfortunately,
custom routines often fail on straightforward caching
simulators. A further complication is primitives are
often ill-specified, or actual behavior does not match
the specification [Kep96].

Primitives vary widely and include special instruc-
tions, reads or writes of special registers, coproces-
sor commands, special traps, calls to special routines,
and so on. Primitives may depend on both the pro-
cessor and the system platform: some caches are inte-
gral with the processor, while others depend on sup-
port chips, the system board, and so on. Primitives
may also depend on the operating system and on run-
time configuration of the hardware resources.

Some examples demonstrate the range of primi-
tives. One common primitive is simply an indica-
tor that “coherency is needed”. Such primitives are
common on machines with small instruction caches
refilled from coherent memory. A more sophisticated
primitive indicates a region of change, such as an
N-byte aligned N-byte block, or a base address and
length of coherency.

Primitive running times vary greatly. For example,
the SPARC iflush instruction signals coherency on an
aligned fixed-size region. iflush works on all SPARC
processors, but some implementations take just a few
cycles, while platforms with off-processor caches may
trap and run tens of thousands of instructions. Thus,
repeated calls to iflush to ensure coherency of a large
memory region may be cheap or may be quite expen-
sive.

Primitives vary greatly, and some require privi-
leged operation. Therefore, many operating systems
provide abstract interfaces that work with any un-
derlying implementation. Simulators can discover
instruction space modification using platform primi-
tives, abstract interfaces, or both.

Some applications bypass slow primitives and use
custom code. For example, coherency of a mod-
ified instruction may be effected by executing an-
other instruction that maps to the same line in a
direct-mapped cache [Kep96]. Such “coherency by
code placement” may be an order of magnitude faster
on hardware, but simulators have trouble recognizing
such use as instruction space modification, since co-
herency is effected using ordinary instructions. Thus,
every instruction is potentially being executed to en-
sure coherency.

Some platforms guarantee coherency without an
explicit primitive. Instead, the processor provides a
guaranteed constraint. For example, some x86 pro-
cessors have a 16-byte prefetch. The processor guar-
antees it will execute a modified instruction, provided
the instruction write is followed by a branch or at
least 16 bytes of other instructions. Newer IA-32 pro-
cessors force immediate coherency, and appear as if
there were no prefetching or pipelining at all [Kep96].

Some instruction-space modifications rely in part
on changes to the processor’s address mapping.
Therefore, simulators may need to track paging struc-
tures. For example, virtual address 0x1000 may
initially map to instruction A at physical address
0x4000, then be remapped to B at 0x5000. Al-
though no memory values have changed, the instruc-
tion space has changed, and any values cached with
the tag 0x1000 must be made coherent.

4

Finally, some applications are buggy with respect
to the hardware coherency model, yet “happen” to
work on specific implementations. Thus, a simulator
or hardware may correctly implement the coherency
model yet still be unable to run some applications
(see “tunable discard”, §5.3).

4 Caching Simulators

Conceptually, instruction-set simulators operate by
repeatedly reading the current machine instruction,
decoding it to determine what it “means”, then per-
forming the effect of that instruction. Decoding is
often the most expensive part, so fast simulators of-
ten cache a decoded form of instructions to avoid re-
peated decoding. For this discussion, static transla-
tion and persistent caching [May87, SCK+93, Fla94,
CHH+98, RMD08] count as “caching” simulators.

Figure 3a shows sample code for a decode-and-
dispatch simulator. It fetches and decodes each in-
struction on each execution. Figures 3b and 3c show
a caching translator. Figure 3b shows the common
case, in which the target program counter maps di-
rectly to a decoded handler. Figure 3c shows the
cache miss case, where the cache is reloaded by fetch-
ing and decoding an instruction.

Caching can reduce decode costs, but also intro-
duces coherency problems: when a target instruction
is modified, the simulator must execute the modi-
fied version rather than the unmodified original. The
simulator in Figure 3a always fetches and decodes the
latest version of the instruction, but the simulator in
Figures 3b and 3c only fetches and decodes the in-
struction on a cache miss.

For example, suppose address 0x40 initially holds
0x54ea340c which is an add. When the simulator ex-
ecutes that instruction, it loads cache with the asso-
ciation {0x40, sim add}. Later, the application over-
writes location 0x40 with a branch. However, as long
as the original association is cached, the simulator ex-
ecutes sim add instead of sim br. Larger caches can
give higher simulator performance but can also hold
more “stale” instructions.

Caching simulators must, therefore, do extra work
to detect code modification. In the best case, a tar-
get processor or platform provides a coherency primi-
tive to ensure coherency of hardware caches; applica-
tions use that primitive; and the primitive is a good

match to the simulator. For example, the SPARC
provides an iflush instruction that performs coherency
of a 32-byte region whose virtual address is in regis-
ter a0. Simulators can implement iflush by discard-
ing decoded instructions for that address range. The
simulator of Figure 3b, for example, might clear all
mappings from cache which are tagged with an ad-
dress in the 32-byte range starting at a0.

More complicated situations have a poor match be-
tween target, target workloads, the coherency primi-
tive, and simulator. For example, the Shade SPARC
simulator generates and caches host-code transla-
tions of target-code sequences. The translation cache
is searched by virtual address, but some reachable
translations cannot be found by the search [CK93],
making it hard to find all translations invalidated by
a given iflush. Therefore, Shade’s iflush implementa-
tion discards all translations, not just those near the
address in a0. The strategy works well when iflush is
used rarely. When iflush is used frequently, Shade dis-
cards many valid translations, and re-creation over-
head slows simulation.

Finally, hardware support may speed coherency.
For example, with multiple write-protect bits per
page, one bit can implement target write protection
and the others can trap writes to locations the simu-
lator has cached [EAGS01, KCW01, BAG+02].

5 Simulator Implementations

A simulator may implement coherency using any
strategy that makes sense. A code modification in-
stance usually consists of a target instruction write
event; a target coherency event if the target sup-
ports it; and a target instruction execute event. A
caching simulator has internal events when it reads
and caches instructions, and when it dispatches to
and executes code that implements a decoded in-
struction.

Efficient detection of instruction-space modifica-
tion typically depends on recognizing key modifica-
tion events, then mapping those events on to details
of the simulator implementation. A simulator may
use any, all, or none of the events to detect and im-
plement instruction-space modification. It may also
use events in an “unintended” manner. For example,
a simulator may use a target coherency event to mark
items needing coherency, but defer actual coherency

5

loop { loop { xlate (vs) {
i = fetch (vs.pc) h = find (cache, vs.pc) i = fetch (vs.pc)
h = decode (i) if (!h) { h = xlate (vs) h = decode (i)
(*h)(vs) save (cache, h, vs.pc) } return h

} (*h)(vs) }
}

(a) (b) (c)

Figure 3: Common simulator implementations. Fragment (a) is a decode-and-dispatch simulator. Instruc-
tions are fetched and decoded every time they are executed. Decoding resolves to a handler, h, which
simulates the effect of the instruction, updating the virtual (simulated) state vs. Fragments (b) and (c) show
a caching simulator. Each mapping from an instruction address vs.pc to a handler is saved in cache. The
common case skips fetch and decode. Mappings for a given vs.pc are created by calling xlate().

until the next execute event. Finally, a simulator may
may switch between several strategies, each tuned to
different uses.

In researching various strategies, it may be use-
ful to study the sequence of operations performed by
hardware or a non-caching simulator and compare
them against the caching simulator. Such a compar-
ison often highlights which events are weakened or
removed by the caching simulator, and can thus help
point to a good solution.

Consider, for example, simulating target locations
A, B, C. Figure 4a shows a trace of operations per-
formed by a decode-and-dispatch interpreter. No-
tably, the simulator decodes A every time it is ex-
ecuted. If A is executed, changed, then re-executed,
the simulator re-decodes A when it is re-executed,
and thus correctly notices changes to A.

Figures 4b and 4c show operations performed by a
caching simulator. emit saves the result of the decode
without executing it. Figure 4b generates Figure 4c,
so all operations in Figure 4b are executed before any
in Figure 4c. If locations A, B, C are re-executed,
Figure 4c is reexecuted directly without re-executing
Figure 4b.

How can we modify a caching simulator to de-
tect instruction space modifications? One solution is
shown in Figure 4d: the generated code is augmented
to fetch each instruction and compare the current
value against the value of the instruction when the
code was created [May87]. Executing an instruction
N times thus fetches it N + 1 times, but where com-
paring is cheaper than decoding, the overall cost of
Figures 4b and 4d can be less than that of Figure 4a.

Following sections describe coherency strategies in
more detail. §5.1 describes basic techniques. §5.2

and §5.3 describe ways to tune or combine techniques
for better performance in specific situations. Though
described in terms of target code, external actors such
as debuggers, I/O, etc. are similar.

5.1 Basic Techniques

Interpret – No Cached Form Simulators may avoid
coherency problems by avoiding cached forms, but
performance tends to be worse. For example, Spa is
an interpreter for a straightforward target that runs
on an identical underlying host. It is coded in assem-
bly and requires about 40 instructions to simulate
each instruction [Irl93]. Shade is a caching simula-
tor; in similar use, it is often an order of magnitude
faster [CK94]. Thus, removing the cached form al-
together may be unacceptable, but avoiding caching
in certain situations may solve coherency problems
while still giving good performance for common use.

Discard A simulator may generate and execute a
decoded form, then immediately discard it [CK94].
The effect is similar to interpretation, but may be
simpler to implement given an existing translator.
Generating code is typically slower than interpret-
ing, so discard performance is usually worse. Sev-
eral instructions may be translated together, so care
is needed to maintain dependencies. For example,
failures can occur translating more than 16 bytes
on an IA-32 (§3); past writes of S/370 base regis-
ters [May87]; past execute [May87] or iflush instruc-
tions; and so on.

Target Coherency Primitive For systems that
have and use a target coherency primitive, use it to
mark or discard cached forms which may cover the
indicated region. Some target primitives indicate in-

6

fetch A fetch A fetch A
decode A decode A A 6= Asaved ⇒ regenerate
t = vs.regA emit Ahost t = vs.regA t = vs.regA
u = fA(t) u = fA(t) u = fA(t)
vs.regB = u vs.regB = u vs.regB = u
vs.pc += 4
fetch B fetch B fetch B
decode B decode B B 6= Bsaved ⇒ regenerate
t = vs.regB emit Bhost

u = fB(t) u’ = fB(u) u’ = fB(u)
vs.regC = u vs.regC = u’ vs.regC = u’
vs.pc += 4
fetch C fetch C fetch C
decode C decode C C 6= Csaved ⇒ regenerate
t = vs.regC emit Chost

u = fC(t) u” = fC(u’) u” = fC(u”)
vs.regD = u vs.regD = u” vs.regD = u”
vs.pc += 4 vs.pc += 12 vs.pc += 12

dispatch dispatch dispatch

(a) (b) (c) (d)

Figure 4: Operations performed by various simulators while executing locations A, B, C. Code (a) fetches,
decodes, and simulates every instruction on every execution. Code (b) fetches and decodes instructions, then
emits (c), which simulates the instructions. Note that (c) runs without fetching or decoding: when A, B, C
is re-executed, only the operations in fragment (c) are repeated, so changes to A, B, or C go unnoticed. Code
(d) is like (c), but fetches and compares each instruction against their values when the sequence was created.
If any have changed, the sequence is regenerated. Each fi corresponds to a specific value of h in Figure 3.
The dispatch operation finds the next sequence to execute; it corresponds approximately to Figure 3b.

coherency, but do not say what is incoherent. Thus,
straightforward use of such primitives may lead to
excess invalidation, because all cached values are dis-
carded, not just those which are incoherent.

Mutator Checking Code does not change by it-
self; some mutator must change it, and executing mu-
tators can signal simulator coherency. Typically, all
writes are assumed to be mutators, as it is gener-
ally hard to determine precisely which instructions
change other instructions, though target coherency
primitives can help to identify mutators, and identi-
fying specific cases can be useful [Hay94].

Tag Checking Cached forms are tagged. Many
systems tag cached forms by instruction address and
check each store’s address against tags. Checking
all store addresses is expensive in general, but some
cases may be handled quickly. For example, code
write checks may be integrated with other page write

checks [MW94]. Other tagging checks are possible,
such as comparing the current form’s tag against
preceding store addresses. or tagging with address
spaces, timestamps, and so on.

Value Checking Stores cause incoherence by
changing values with a cached forms. Thus, co-
herency can be signaled by looking for value changes.
For example, a simulator can record the value of
memory when a decoded form is cached; when the
decoded form is executed, it compares the saved and
current values of memory. If the values differ, co-
herency is needed. Value checking saves the origi-
nal target instructions, and may read both saved and
current instruction values as data each time a target
instruction is executed [May87, DGB+03]. Thus, ex-
ecution overhead and memory pressure can be high.

7

5.2 Optimization Strategies

None of the above techniques excels in all settings.
However, most can be tuned to a particular situation.
This section describes several general optimization
hints applied to coherency.

Beware that optimization typically risks several
problems. First, performance depends on choosing
the right optimization; the wrong one may make
performance uniformly worse. Second, common-
case costs are usually improved at the expense of
uncommon-case costs, so optimization may cause
simulator performance to vary within a workload
or across workloads. Third, performance improve-
ment is limited by the cost of choosing a strategy,
as well as the cost of the strategy itself. Fourth,
some schemes incur additional space costs, and us-
ing several schemes together usually incurs further
space costs – space cost can include data cache, in-
struction cache, paging, write buffer stalls, and so on.
Fifth, caching optimizations can introduce their own
coherency problems. Sixth, using several implemen-
tations increases the risk of bugs at the same time
that it reduces the coverage of any given implemen-
tation, so using several implementations may lead to
reliability problems and dramatically increased devel-
opment time and costs.

Be Conservative Sometimes it is expensive to be
precise. If coherency is conservative, it often need
not be exact. For example, any write to a page can
force coherency for the whole page. Beware that con-
servative approaches may lead to problems like false
sharing, where cached forms near a change are coher-
ent, yet incur the same cost as incoherent forms.

Speculate Coherency can be performed specula-
tively, anticipating a need. For example, the first
write to a page speculatively discards all cached forms
for that page, so further writes to the page can omit
coherency until subsequent execution from the page.

Stage/Be Lazy A given instance of code modifica-
tion is composed of many events (§5). The handling
of coherency may be staged across multiple events.
For example, at a write event, record the address of
a potential incoherency; at a target coherency event,
record the address of expected coherency; at an ex-
ecute event, implement coherency on just those lo-
cations which are both changed and expected to be
coherent.

Cache Caching can make common operations fast.

For example, it may be expensive to check if a
write touches any interesting page. If writes usually
touches the same page repeatedly, it may speed the
common case to first compare against the last page
touched. Beware of coherency issues.

Combine With Other Operations Some co-
herency checks can be combined with other simulator
operations so a single operation checks several condi-
tions simultaneously. For example, write checks for
page protection and coherency may be combined; or,
tests for dispatch and coherency may be combined.
When combined tests fail, perform separate tests to
determine the root cause.

Use a Hierarchical Implementation If a cheap
operation is sometimes inadequate, try the cheap
form first and fall back to the more expensive. For
example, first check if an address is in read-only mem-
ory; further test for changes only in writable memory.

Use Host Hardware It may be possible to use
cheap host operations to implement parts of co-
herency. For example, write-protect target pages
with cached forms and load the host TLB [RHWG95]
with the lesser of target and simulator write enables,
thus making common write checks faster.

Hybridize Use several cheap strategies instead of
one expensive one. For example, for ordinary code,
tag it with base register addresses and for execute,
copy the value of the instruction [May87].

Adapt Change strategies while executing. Three
general adaptive strategies are to deoptimize, to re-
optimize with new assumptions, or to choose among
several specialized implementations [Kep96]. For ex-
ample, a simulator may default to cheap page-level
coherency, but for each page where coherency opera-
tions are frequent, switch to a finer-grained strategy
with more expensive checking but lower overall costs.
Adaptation typically requires ongoing measurement
to determine when, where, and how adaptation is re-
quired. Thus, there is often measurement overhead.
Also, it may be impossible to measure exactly, so
measurement error needs to be considered in choosing
adaptation thresholds. For example, adaptation can
“hunt”, continually trying new strategies, but never
settling on one and paying both the cost of a bad
strategy and the cost of adaptation.

Approximate Real systems crash; faulty approx-
imate solutions may be “good enough” if they fail
much less often than the overall system. For exam-
ple, compute and compare a CRC insteady of actual

8

values. Use a model to compute the odds of a differ-
ent memory value but the same summary value. Use
approximation only if it is much more reliable than
the accepted failure rate.

Phase Divide execution into phases and keep a
virtual timestamp to indicate system or implementa-
tion behavior. Comparing against a timestamp may
be cheaper than other tests. For example, a system
which tracks writes may note the “time” of the last
write to a page. Newer cached forms are coherent
and need no further checking.

Pool/Aggregate/Cluster Some policies work
best if like things are considered together. For exam-
ple, cached locations with especially high or low mod-
ification rates may be considered together so thresh-
olds or adaptation rates can be adjusted to reflect
system usage rather than that of an isolated location.

Specialize Rather than solving the general prob-
lem, solve a specific problem well. If necessary, adap-
tively change the kind or degree of specialization. For
example, instead of solving the general problem of de-
tecting coherency by code placement (§3), focus on
solving the particular placement code known to ap-
pear in a particular application.

Tune A simulator can allow the user to tune
the implementation by choosing between simulator
mechanisms or by providing their own [Kep93]. For
example, Shade usually uses iflush to signal code-
space changes. Applications omitting the required
iflush can be run using an optional slow-but-correct
strategy that discards each translation from writable
pages immediately it runs. Tuning choices include
correct mechanisms with differing performance char-
acteristics, and mechanisms that are correct for some
workloads, but which fail for others.

Undo Save incoherent versions of the cached form
and the conditions for which it is valid. When pos-
sible, requalify the form and reinstate it, rather than
recreating it. For example, Mimic caches multiple
translations corresponding to different execute regis-
ter values; checking to requalify a fragment is typi-
cally much faster than recreating it [May87].

Finally, note that many techniques described here
are used to implement programming languages. The
overlap is not coincidence: machine code is simply an-
other programming language. Many techniques ap-
ply broadly, so studying other programming systems
can provide hints about how to improve simulators.

5.3 Specific Implementations

This section describes several schemes in more detail,
to highlight tradeoffs.

Target Coherency Primitive; Combine In g88,
target instruction cache invalidation primitives cause
translated threaded code to be replaced with a
pointer to a primitive to re-decodes the invali-
dated instructions [Bed89]. Like ST-80’s receiver
caching [DS84], the retranslation is coded in the
callee pointer, rather than requiring extra checks in
the caller. g88 maps memory using a multi-level DAG
so decoded instruction dispatch uses no conditionals.

Target Coherency Primitive, Conservative
Shade translation lookup uses a cache, so transla-
tions may be reachable by chaining from other trans-
lations, yet not otherwise findable to invalidate them
selectively when the target performs an iflush. Shade
could keep additional data structures, but instead im-
plements iflush by discarding all translations [CK93].
This approach is simple and reliable, and perfor-
mance is good as long as iflush is rare.

Write-Time Discard A system can check all
writes and discard cached forms that overlap with
writes. Various systems include explicit checks in
the write simulation. SimOS sets page protection to
the lesser of target and simulator write enables, so
host writes fault on target code changes [RHWG95].
Crusoe and DAISY for PowerPC use hardware
with a “coherency” bit per page to speed write
checks [EAGS01, KCW01]. DAISY for x86 and S/390
uses hardware with one coherency bit per translat-
able unit, 1 bit per byte for x86 and 1 bit per 2
bytes for S/390 [EAGS01]. A Bull GCOS 8 simula-
tor uses several coherency bits per 36-bit translatable
unit [MNC03].

Adaptive Discard DynamicRIO groups contigu-
ous pages, and discards translations for a group when
any page in the group is written, adaptively splitting
a group when code on one page writes code on an-
other page in the same group [BA05].

Hierarchical Discard QEMU protects pages at
translation time, and page writes discard transla-
tions for the page. When running with a software
MMU, frequent invalidations cause QEMU to gener-
ate a bitmap for the page and only discard transla-
tions that overlap with stores [QEM09]

Tunable Discard The SPARC ABI requires an
iflush on code modification. Some old applications fail

9

to use it, yet run on some SPARC hardware [CK93].
Shade has a command-line option instructing Shade
to generate, execute, then discard translations of code
from writable pages [Cme93]. This approach risks
high retranslation overhead, but works well in prac-
tice as most time is spent executing read-only code.

Undo Value Checking Mimic tags code gener-
ated for each value of the execute instruction. If an
instruction reappears, the cached form is revalidated
using a cheap comparison instead of generating new
code. Typically, few distinct values are used for any
given application run [May87]. Crusoe tags trans-
lations on frequently-written (sub-)pages with their
memory value when translated. When a new transla-
tion for the region is needed, Crusoe first checks a list
of previously-valid translations [BAG+02, DGB+03].

Adaptive and Conservative Value Checking For
frequent code page writes, Crusoe generates “self-
requalifying” translations tagged with aligned, fixed-
size copies of target code. If subpage trap rates are
too high, Crusoe leaves the page writable, and gen-
erates “self-checking” translations that check mem-
ory on each invocation. Self-checking avoids false
sharing, and while more expensive per invocation,
avoids trap overheads. If self-check fails too often,
Crusoe generates translations that invoke the inter-
preter [BAG+02, DGB+03].

Hierarchical Write Checking and Execution-
Time Undo Crusoe hardware has hardware subpage
coherency protection. At translation, subpages are
marked read-only. Subpage writes trap, the page is
marked writable, and affected translations are moved
to a save list. When the subpage is next executed,
it is again marked read-only, and translations whose
tags match current memory are again made exe-
cutable [DGB+03].

Mutator Specialization FlashPort simulates a
target code generator with an application-specific
host code generator. Translator performance is im-
proved, as it avoids the indirect path of generating
target code then translating it to host code. Gen-
erated code performance is also improved, as host
code is generated directly by an application-specific
host code generator, instead of using an application-
specific target code generator followed by a general-
purpose target-to-host translator. Finally, the spe-
cialized mutator ensures coherency directly, rather
than relying on detection of code changes [Hay94].

Hybrid Caching and Interpretation Where in-
struction changes are frequent but limited in scope,
use fast cached execution for slow-changing parts,
and interpretation for frequently-changing parts. For
example, in Figure 2c, only the immediate varies from
invocation to invocation. For this case, Crusoe gen-
erates translations that interpret the immediate by
fetching it from the target instruction [DGB+03].
Various systems use static translation for the fast
cached form [SCK+93, CHH+98]. An interpreter
may also use caching, with lower coherency costs than
the faster cached form [RMD08].

Hierarchical Dispatch-Time Value Checking
Straightforward value checking performs a load, com-
pare, and branch for each use of each instruction.
Consider checking only when the target cache is filled.
For a target with direct-mapped caches, applications
sometime ensure instruction A is coherent by execut-
ing an instruction B that maps to the same cache
location [Kep96]. A simulator can use a map with
the same structure as the hardware cache and per-
form value checking only when the map misses.

Hierarchical Host/Software Testing SimOS
maps target memory at host addresses using the
host MMU. Writable target pages with translations
are marked read-only to trap on write (see “Write-
Time Discard”, above). The host MMU must map
simulator pages, leaving them exposed to stray ref-
erences from the simulator. Thus, each target
access is “guarded” with a software range check,
with remaining checks performed using the host
MMU [RHWG95].

Conservative Target Coherency Primitive Nir-
vana uses the IA-64 coherency primitive as a hint for
faster execution, but modified code is executed cor-
rectly even if the primitive is omitted [BCdJ+06].

Phased Target Coherency Primitive PowerPC’s
ICBI instruction implements coherency by invalidat-
ing an instruction cache block. On page load, the
AIX operating system runs ICBI for all blocks on the
page. BOA performs coherency at the page level, so
detects repeated ICBI from a page without interleaved
translation from that page, thus speeding common
use [AG06].

Phased Translation A Bull GCOS 8 simulator
uses interpretation during OS boot, when code mod-
ification rates are high, then switches to translation
for normal operation [MNC03].

10

6 Conclusions

Fast instruction-set simulators are used for cross-
machine simulation, dynamic optimization, data col-
lection for performance analysis, and to implement
sophisticated debugger features. Caching techniques
help the simulators go fast, but target workloads use
dynamic instruction space modification, which can
violate caching assumptions. This paper presents ap-
proaches to maintain the benefits of caching, while
supporting workloads with dynamic code. There are
many approaches and no clear winner, but the wide
variety of approaches provides the simulator writer
with a set of tradeoffs and that can give good perfor-
mance across a variety of workloads.

7 Acknowledgements

Thanks to Bob Cmelik for discussing these ideas
and to Bob and Stephen Russell for reviewing ear-
lier drafts of this paper. This work supported in part
by NSF PYI Award #MIP-9058-439, Sun Microsys-
tems, and Stephen Russell.

References

[AG06] E. Altman and M. Gschwind. Dynamic compila-
tion at the ssystem level, 2006. Slides from CGO talk.

[BA05] D. Bruening and S. Amarasinghe. Maintaining
consistency and bounding capacity of software code
caches. In Proc. of the International Symposium on
Code Generation and Optimization (CGO), 2005.

[BAG+02] J. Banning, H. P. Anvin, B. Gribstad, D. Kep-
pel, A. C. Klaiber, and P. Serris. Fine grain translation
discrimination. United States Patent #6,363,336, Is-
sued 2002.

[BCdJ+06] S. Bhansali, W.-K. Chen, S. de Jong, A. Ed-
wards, R. Murray, M. Drinic, D. Mihocka, and J. Chau.
Framework for instruction-level tracing and analysis of
program executions. In Conference on Virtual Execu-
tion Environments, page 154, Jun. 2006.

[Bed89] R. Bedichek. Some efficient architecture simu-
lation techniques. Proc. of the 1989 USENIX Confer-
ence, pages 53–63, Oct. 1989.

[BKKK03] P. Boyle, D. Keppel, A. C. Klaiber, and E.
Kelly. Software direct memory access, U.S. Patent
#6,668,287, Issued 2003.

[Bro60] F. P. Brooks, Jr. The execute operations – a
fourth mode of instruction sequencing. Communi-
cations of the Association for Computing Machinery
(CACM), 3(3):168–170, Mar. 1960.

[CHH+98] A. Chernoff, M. Herdeg, R. Hookway, C.
Reeve, N. Rubin, T. Tye, S. B. Yadavalli, and J. Yates.
FX!32 – a profile-directed binary translator. IEEE Mi-
cro, 18(2), Mar./Apr. 1998.

[CK93] R. F. Cmelik and D. Keppel. Shade: a fast
instruction-set simulator for execution profiling. Sun
Microsystems Laboratories, Inc., Technical Report
SMLI 93-12; University of Washington Dept. of Comp.
Sci. & Eng., UWCSE 93-06-06, 1993.

[CK94] R. F. Cmelik and D. Keppel. Shade: a fast
instruction-set simulator for execution profiling. ACM
SIGMETRICS Conference on Measurement and Mod-
eling of Computer Systems, pages 128–137, May 1994.

[CK95] R. F. Cmelik and D. Keppel. Shade: a fast
instruction-set simulator for execution profiling. In T.
M. Conte and C. E. Gimarc, editors, Fast simulation of
computer architectures, chapter 2, pages 5–46. Kluwer
Academic Publishers, 1995.

[Cme93] R. F. Cmelik. The shade user’s manual, Febru-
ary 1993.

[Col95] R. Colwell. The P6 microprocessor. Distin-
guished lecturer series. University of Washington Dept.
of Comp. Sci. & Eng., 9 Nov. 1995.

[DGB+03] J. Dehnert, B. Grant, J. Banning, R. John-
son, T. Kistler, A. C. Klaiber, and J. Mattson. The
Transmeta code morphing software: using speculation,
recovery, and adaptive retranslation to address real-life
challenges. Proc. of the 2003 International Symposium
on Code Generation and Optimization, pages 15–24,
Mar. 2003.

[DS84] L. P. Deutsch and A. M. Schiffman. Efficient
implementation of the Smalltalk-80 system. In Proc.
of the 11th Annual ACM Symposium on Principles of
Programming Languages, pages 297–302, Jan. 1984.

[EAGS01] K. Ebcioglu, E. Altman, M. Gschwind, and
S. Sathaye. Dynamic binary translation and optimiza-
tion. IEEE Transactions on Computers, 50(6), Jun.
2001.

[Fla94] Flashport technology overview, 1994.

[Hay94] D. Hayden. Personal communication, Aug. 1994.

[Irl93] G. Irlam. Personal communication to R. F. Cme-
lik, 1993.

[KCW01] E. Kelly, R. F. Cmelik, and M. Wing. Trans-
lated memory protection apparatus for an advanced
microprocessor. United States Patent #6,199,152,
Mar. 2001.

[Kep93] D. Keppel. Managing abstraction-induced com-
plexity. Technical Report 93-06-02, University of
Washington, Dept. of Comp. Sci. & Eng., Jun. 1993.

11

[Kep96] D. Keppel. Runtime code generation. PhD the-
sis, University of Washington, 1996.

[Lei93] R. Leinecker. Processor detection schemes. Doc-
tor Dobb’s Journal, pages 46–49, 126–127, Jun. 1993.

[Loc87] B. Locanthi. Fast Bitblt with asm() and
CPP. European Unix Users Group Conference Proc.
(EUUG), Sept. 1987.

[May87] C. May. Mimic: a fast S/370 simulator. Proc. of
the ACM SIGPLAN 1987 Symposium on Interpreters
and Interpretive Techniques, 22(7):1–13, Jun. 1987.

[MNC03] G. Mann, B. Noyes, and R-J. Chevance.
Method and apparatus for emulating self-modifying
code, 4 Feb. 2003. U.S. Patent 6516295.

[MW94] P. Magnusson and B. Werner. Some efficient
techniques for simulating memory. Technical Report
R94:16, Swedish Institute of Computer Science, Sept.
1994.

[PLR85] R. Pike, B. Locanthi, and J. Reiser. Hard-
ware/software trade-offs for bitmap graphics on the
Blit. Software—Practice and Experience, 15(2):131–
151, Feb. 1985.

[QEM09] QEMU internals. http://www.nongnu.org.
2009.

[RHWG95] M. Rosenblum, S. Herrod, E. Witchel, and
A. Gupta. Complete computer system simulation: the
SimOS approach. IEEE Parallel and Distributed Tech-
nology, 3(4):34–43, Winter 1995.

[RMD08] M. Reshadi, P. Mishra, and N. Dutt. Hy-
brid compiled simulation: an efficient technique for
instruction-set architecture simulation. 2008.

[SCK+93] R. Sites, A. Chernoff, M. Kerk, M. Marks, and
S. Robinson. Binary translation. Communications of
the Association for Computing Machinery, 36(2):69–
81, Feb. 1993.

12

