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Abstract
Tracing tools are used widely to help analyze, design, and tune
both hardware and software systems. This paper describes a tool
called Shade which combines efficient instruction-set simulation
with a flexible, extensible trace generation capability. Efficiency
is achieved by dynamically compiling and caching code to simu-
late and trace the application program. The user may control the
extent of tracing in a variety of ways; arbitrarily detailed applica-
tion state information may be collected during the simulation, but
tracing less translates directly into greater efficiency. Current
Shade implementations run on SPARC systems and simulate the
SPARC (Versions 8 and 9) and MIPS I instruction sets. This
paper describes the capabilities, design, implementation, and per-
formance of Shade, and discusses instruction set emulation in
general.

1. Introduction
Tracing tools are used widely to help in the analysis, design, and
tuning of both hardware and software systems. Tracing tools can
provide detailed information about the behavior of a program; that
information is used to drive an analyzer that analyzes or predicts
the behavior of a particular system component. That, in turn, pro-
vides feedback that is used to improve the design and implemen-
tation of everything from architectures to compilers to applica-
tions. Analyzers can consume many kinds of trace information.
For example, address traces are used for studies of memory
hierarchies, register and operand usage for pipeline design, in-
struction combinations for superscalar and deep-pipe designs, in-
struction counts for optimization studies, operand values for
memoizing studies, and branch behavior for branch prediction.

Several features can improve the utility of a tracing tool. First,
the tool should be easy to use and avoid dependencies on particu-
lar languages and compilers. Ideally it should also avoid poten-
tially cumbersome preprocessing steps. Second, it should be able
to trace a wide variety of applications including those that use sig-
nals, exceptions and dynamically-linked libraries. Third, trace
generation should be fast, both so that traces can be recreated on
demand, instead of being archived on bulk storage, and so that it
is possible to study realistic workloads, since partial workloads
may not provide representative information [BKW90]. Fourth, a
tracing tool should provide arbitrarily detailed trace information
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so that it is useful for a wide variety of analyzers; in general, this
means that it must be extensible [NG88] so that it can be pro-
grammed to collect specialized information. Finally, it should be
possible to trace applications for machines that do not yet exist.

These features are often at odds with each other. For example,
static cross-compilation can produce fast code, but purely static
translators cannot simulate and trace all details of dynamically-
linked code. Also, improved tracing flexibility generally means
reduced performance. An interpreter that saves address trace in-
formation may be reasonably fast, but adding control over wheth-
er the interpreter saves an address trace will slow the simulation,
if at every instruction the simulator must check whether to save
trace information. Providing finer control over where to save
trace data slows simulation even more; adding the flexibility to
save other kinds of trace information slows simulation yet further.

Because of the conflict between generality and performance, most
tools provide only a subset of the features listed above. Shade
provides the features together in one tool and uses five general
techniques to achieve the needed flexibility and performance.
First, Shade dynamically cross-compiles executable code for the
target machine into executable code that runs directly on the host
machine. Second, the host code is cached for reuse so that the
cost of cross-compiling can be amortized. Third, simulation and
tracing code are integrated so that the host code saves trace infor-
mation directly as it runs. Fourth, Shade gives the analyzer de-
tailed control over what is traced: the tracing strategy can be
varied dynamically by opcode and address range. Shade then
saves just the information requested by the analyzer, so clients
that need little trace information pay little overhead. Finally,
Shade can call special-purpose, analyzer-supplied code to extend
Shade’s default data collection capabilities.

This paper makes several contributions. We introduce dynamic
compilation and caching techniques used for building fast cross-
architecture simulators. We show how a tracing tool can be made
extensible, and thus more flexible. Finally, we show how simula-
tion and instrumentation code can be integrated to save trace in-
formation efficiently. We show these ideas using Shade, which
performs cross-architecture simulation, collects many kinds of
trace information, allows fine control over the tracing, is extensi-
ble, which simulates and traces the target machine in detail (in-
cluding tricky things like signals and self-modifying code), and
which, despite all of the above flexibility, has performance com-
petitive with tools that just cross-simulate without tracing, with
tools that do only simple tracing, and even with those that omit
details to improve simulation and tracing efficiency. Thus, Shade
shows that a general-purpose tool can be efficient enough to effec-
tively replace many other tools. This paper also presents a frame-
work for describing simulation and tracing tools.



The remainder of this paper is organized as follows: Section 2
describes the interface seen by programmers who use Shade to
write analyzers. Section 3 describes the implementation of Shade,
focusing on compilation, caching and instrumentation. Section 4
discusses cross-architecture simulation. Section 5 reports on the
performance of Shade both for native and cross-architecture trac-
ing. Section 6 compares the capabilities and implementation of
other simulation and tracing tools.

2. Analyzer Interface
A Shade analyzer is a program (or that part of a program) which
utilizes the simulation and, to varying degrees, the tracing capabil-
ities provided by Shade. Shade analyzers have been used for pure
simulation (no tracing), to generate memory address traces for use
by other tools, provide a debugger interface to a simulated target
machine for compiler cross-development [Evans92], observe in-
struction operand values [Richardson92], analyze memory cache
performance, analyze microprocessor pipeline performance, and
analyze Shade’s own performance.

Analyzers see Shade as a collection of library functions
[Cmelik93]. Analyzers call these functions to identify the applica-
tion program to be simulated, specify the level of tracing detail,
and to simulate one or more application instructions while collect-
ing the specified trace information.

Shade “knows” how to efficiently collect common trace informa-
tion such as the instruction address and text, data addresses for
memory operations, and the contents of registers used by an in-
struction. Other information may be collected by analyzer-
supplied trace functions. Shade arranges for these functions to be
called before and/or after simulating an application instruction.
The functions have access to the application’s simulated registers
and memory.

The analyzer may specify what trace information to collect and
what trace functions to call on a per-opcode or per-instruction-
address basis. So, for example, an analyzer which wishes to
analyze memory systems might request tracing of just instruction
and data addresses. Tracing selections may change during the
course of the simulation. Thus, an analyzer can skip tracing dur-
ing application initialization, or can trace only in particularly in-
teresting application or library code. The less trace data the
analyzer requests, the faster Shade runs.

3. Implementation
This section describes the basic implementation of Shade. Sec-
tion 3.1 first describes the overall structure of Shade. Section 3.2
describes dynamic compilation of translations that directly simu-
late and trace the application program. Section 3.3 describes how
translations are cached for reuse to reduce compilation overhead.
Finally, Section 3.4 concludes with some special problems and
considerations and the general techniques used in Shade.

3.1. Simulating and Tracing

The heart of Shade is a small main loop that repeatedly maps the
current target (application) PC to a corresponding fragment of
Shade host (simulator) code, called a translation . Each transla-
tion simulates the target instruction, optionally saves trace data,
updates the target PC and returns to the main loop. Shade builds
translations by cross-compiling target instructions into host
machine code. Shade translates application memory references to
refer to simulated memory and, similarly, translates updates of
target registers into updates of simulated registers. Figure 1 sum-
marizes the primary data structures used by Shade.

The main loop, translations, and most utility functions called by
translations all share a common register window and stack frame.
Several host registers are reserved for special purposes. Register

vs is a pointer to the application’s virtual state structure which
holds the simulated registers; vpc is the application’s virtual pro-
gram counter (this is part of the virtual state, but is used enough to
warrant its own host register); vmem is the base address of the
application’s memory; tr is a pointer to the current trace buffer
entry; ntr is the number of unused trace buffer entries; and tlb
is a pointer to the TLB (described below).

Shade maps the target PC to its corresponding translation using a
data structure called the Translation Lookaside Buffer (TLB).
The main loop does a fast, partial TLB lookup. If that fails, a
function is called to do a slower, full TLB lookup. If that fails,
the translation compiler is invoked to generate a new translation
in the Translation Cache (TC) and update the TLB.

The main loop also checks for pending signals that need to be
delivered to the application. Depending on how the application
wishes to handle the signal, Shade may terminate the application
at this point, or arrange for invocation of an application signal
handler. In the latter case, Shade continues simulating and trac-
ing, but now in the application’s signal handler.

Text

Data

Stack

VMEM

•

•

•

cond codes

fp regs

int regs
VS

− −

− −
− −

TLB TC

Figure 1. Shade data structures (not to scale)

3.2. Translations

Application instructions are typically translated in chunks which
extend from the current instruction through the next control
transfer instruction and accompanying delay slot. Translation also
stops at tricky instructions such as software trap and memory syn-
chronization instructions and Shade arbitrarily limits the number
of application instructions per translation in order to simplify
storage allocation. The user’s trace buffer size also limits transla-
tion size. Therefore, a translation may represent more or less than
one basic block of application code, and one fragment of applica-
tion code may be simultaneously represented by more than one
translation. Each translation consists of a prologue, a body with a
fragment for each application instruction, and an epilogue.

3.2.1. Translation Prologue

The translation prologue (see Figure 2) allocates trace buffer
space for the translation. If there is not enough space, the transla-
tion returns control to the main loop, which then returns control to
the analyzer. Prologues are generated only for translations that
collect trace information for at least one target instruction.

The trace space requirements for each translation could be stored
in a data structure and tested by the main loop. That would save
the code space now used for translation prologues, but would re-
quire executing additional instructions to address and load count ,
and would be inconsistent with translation chaining (described
below) in which translations branch directly to each other, bypass-
ing the main simulator loop.



prologue:
subcc %ntr, count, %ntr
bgeu body ! if enough space, run body
nop ! (branch delay slot)
add %ntr, count, %ntr
return to main loop

body:

Figure 2. Translation prologue

3.2.2. Translation Body

The translation body contains code to simulate and (optionally)
trace application instructions. Simulation consists of updating the
virtual state (registers plus memory) of the application program.
Tracing consists of filling in the current trace buffer entry and ad-
vancing to the next.

Figure 3 shows a sample application instruction, and Figure 4
shows code that simulates it. The translation body first loads the
contents of application registers r1 and r2 from the application’s
virtual state structure into host scratch registers s1 and s2. Next,
the translation performs the add operation. Then, the translation
writes the result in host scratch register s3 back to the virtual
state structure location for application register r3. Finally, the
translation updates the application’s virtual PC.

add %r1, %r2, %r3

Figure 3. Sample application code

ld [%vs + vs_r1], %s1
ld [%vs + vs_r2], %s2
add %s1, %s2, %s3
st %s3, [%vs + vs_r3]
inc 4, %vpc

Figure 4. Translation body (no tracing)

The code that is generated to actually perform the application
operation is very often one and the same instruction, but with dif-
ferent register numbers. Where the host machine is a poor match
to the virtual target machine, or where we wish to virtualize the
target machine operations, several instructions, or even a call to a
simulation function may be used. At the other extreme, no in-
structions need be generated to simulate useless application in-
structions (e.g. nop).

Shade allocates host registers to represent target registers; alloca-
tion is on a per-translation basis and can thus span several target
instructions. The host registers hold target register values from
one translated application instruction to the next in order to reduce
memory traffic to and from the virtual state structure. Host regis-
ters are lazily loaded from the virtual state structure, then later la-
zily stored back, but no later than the translation epilogue.

Conceptually, Shade updates the virtual PC for each application
instruction, as shown here. In practice, the virtual PC is only up-
dated in the translation epilogue, or as needed in the translation
body for tracing application instruction addresses.

For application instructions that access memory, Shade translates
the application memory address to a host memory address by ad-
ding a base address offset (which applies for all application
memory).

3.2.3. Tracing

Shade minimizes the amount of tracing code by giving analyzers
precise control over which application instructions should be
traced and what information should be collected for each instruc-

tion. For example, if the analyzer requests tracing for only data
memory addresses from load instructions in a particular library
(an address range), then Shade translates the library’s load in-
structions to directly save the memory address in the trace record.
No other trace information is saved for load instructions, and no
trace information is saved for other instructions or for load in-
structions outside of the library.

Shade compiles the simulation and tracing code together. For ex-
ample, Figure 5 shows code that simulates the sample application
code, and, under analyzer control, traces the instruction address,
instruction text, source and destination registers, and calls both
pre- and post-instruction trace functions supplied by the analyzer.
Whenever a translation calls an analyzer-supplied trace function,
it first returns live application state to the virtual state structure for
use by the trace function.

st %vpc, [%tr + tr_pc] ! trace instr addr
set 0x86004002, %o0
st %o0, [%tr + tr_iw] ! trace instr text
ld [%vs + vs_r1], %s1 ! load 1st src reg
ld [%vs + vs_r2], %s2 ! load 2nd src reg
st %s1, [%tr + tr_rs1] ! trace 1st src reg
st %s2, [%tr + tr_rs2] ! trace 2nd src reg

mov %tr, %o0 ! arg1: trace buf
mov %vs, %o1 ! arg2: virt. state
call pre-instruction trace function

add %s1, %s2, %s3 ! simulate add
st %s3, [%vs + vs_r3] ! save dst reg
st %s3, [%tr + tr_rd] ! trace dst reg

mov %tr, %o0 ! arg1: trace buf
mov %vs, %o1 ! arg2: virt. state
call post-instruction trace function

inc 4, %vpc
inc trsize, %tr ! advance in trace buffer

Figure 5. Translation body (some tracing)

3.2.4. Translation Epilogue

The translation epilogue (see Figure 6) updates the virtual state
structure and returns control either to the main simulator loop or
jumps directly to the next translation. The epilogue saves host re-
gisters that hold modified virtual register values. If the virtual
condition codes have been modified, they too must be saved. The
epilogue also updates the trace buffer registers tr and ntr if
necessary. The virtual PC remains in a host register across trans-
lation calls. Upon leaving a translation, it contains the address of
the next application instruction to be executed.

epilogue:
update virtual state structure
update virtual PC

inc count ∗ trsize, %tr

go to main loop or next translation

Figure 6. Translation epilogue

Often, the execution of one translation always dynamically fol-
lows that of another. The two translations, predecessor and suc-
cessor, can be directly connected or chained to save a pass
through the main simulator loop. The predecessor and successor
can be compiled in any order. If the successor is compiled first,
the predecessor is compiled to branch directly to the successor. If
the predecessor is compiled first, then at the time the successor is
compiled the predecessor’s return to the main simulator loop is
overwritten with a branch to the successor.



Translations for conditional branches are compiled with two
separate exits instead of a single common exit, so that both legs
may be chained. Translations for register indirect jumps and
software traps (which might cause a control transfer) cannot be
chained since the successor translation may vary.

3.3. Translation Caching

The translation cache (TC) is the memory where translations are
stored. Shade simply compiles translations into the TC one after
the other, and the translation lookaside buffer (TLB) associates
application code addresses with the corresponding translations.

When more TC space is needed than is available, Shade frees all
entries in the TC and clears the TLB. Full flushing is used be-
cause translation chaining makes most other freeing strategies
tedious [CK93]. Since full flushing deletes useful translations, the
TC is made large so that freeing is rare [CK93]. Shade also flushes
the TC and TLB when the analyzer changes the tracing strategy
(typically rare), since tracing is hardcoded into the translations.

If an application uses self-modifying code, the TC, TLB, and
translation chaining entries for the modified code become invalid
and must be flushed. SPARC systems provide the flush instruc-
tion to identify code that has changed; many other systems pro-
vide equivalent primitives [Keppel91]. When the application exe-
cutes the modified instructions, Shade compiles new translations
for the changed code.

The TLB is an array of lists of <target, host> address pairs. Each
pair associates an application instruction address with the
corresponding translation address. To find a translation, Shade
hashes the vpc to produce a TLB array index, then searches this
TLB entry (address pair list) for the given application address. If
the search succeeds, the list is reorganized so that the most recent-
ly accessed address pair is at the head of the list. If the search
fails, a translation is generated, and a new address pair is placed at
the head of the list.

Lists are actually implemented as fixed length arrays, which
makes the TLB simply a two-dimensional array of address pairs.
The TLB may also be thought of as N-way set associative, where
N is the list length. Since address pair lists are of fixed length, ad-
dress pairs can be pushed off the end of a list and lost, which
makes the corresponding translations inaccessible via the TLB.
The TLB is large enough that this is not usually a problem [CK93]
and translations are also likely to still be accessible via chaining
from other translations.

3.4. Other Considerations

The decision to simulate, trace, and analyze all in the same pro-
cess leads to conflicts over the use of per-process state and
resources. Conflicts arise between the application program (e.g.
the code generated by Shade to simulate the application), the
analyzer, and Shade (translation compiler, etc.). The conflicts are
resolved in various ways. For example, the host’s memory is par-
titioned so that Shade uses one part of the memory, and the appli-
cation another. Resource conflicts can also arise from sharing
outside of the process. For example, Shade and the application
use the same file system so files written by one can accidentally
clobber files written by the other. In general, conflicts are
resolved by partitioning the resource, by time multiplexing it
between contenders, or by simulating (virtualizing) the resource.
Some conflicts are unresolved, usually due to an incomplete
implementation [CK93].

Shade’s target code parser is ad hoc, though machine code parsers
can be built automatically [Ramsey93]. Shade uses an ad hoc code
generator which generates code in roughly one pass. Some minor
backpatching is later performed to chain translations and replace
nops in delay slots. The resulting code could no doubt be im-

proved, but the time spent in the user-supplied analyzer usually
dwarfs the time spent in Shade’s code generation, simulation, and
tracing combined.

Many of the implementation issues and choices, as well as some
of the implementation alternatives, are described elsewhere
[CK93], as are details of the signal and exception handling and im-
plementation of the system call interface.

4. Cross Shades
In the previous section we focused on the Shade (subsequently re-
ferred to as Shade-V8.V8) for which the host and target architec-
tures were both Version 8 SPARC, and for which the host and tar-
get operating systems were both SunOS 4.x [SunOS4]. Other
Shades have been developed. The first (Shade-MIPS.V8) runs
UMIPS-V [UMIPSV], MIPS I [Kane87] binaries, and the second
(Shade-V9.V8) runs SunOS 4.x, Version 9 SPARC [SPARC9]
binaries. The host system for both is SunOS 4.x, Version 8
SPARC. There are also versions of Shade-V8.V8 and Shade-
V9.V8 where both the host and target operating systems are
Solaris 2.x [SunOS5]. All of these Shades are at least complete to
the extent that they can run SPEC89 binaries compiled for the
respective target systems.

4.1. Shade-MIPS.V8

Shade-MIPS.V8 provides Shade’s custom tracing capabilities for
MIPS binaries. Given Shade-V8.V8 and ready access to SPARC
systems, SPARC was the natural choice for the host architecture.
As a rule, MIPS instructions are straightforward to simulate with
just a few SPARC instructions. This is possible because both the
MIPS and SPARC architectures are RISC architectures, both sup-
port IEEE arithmetic, and the MIPS architecture lacks integer
condition codes.

Little attention was paid to simulation efficiency, beyond the
efficient simulation techniques already used in Shade. On aver-
age,1 Shade-MIPS.V8 executes about 10 SPARC instructions to
simulate a MIPS instruction.

Some differences between the host and target machines make
Shade-MIPS.V8 less faithful, slower, or more complicated. For
example, MIPS systems support both big-endian and little-endian
byte ordering [James90], but V8 SPARC only supports the former.
Shade-MIPS.V8 currently runs only code that has been compiled
for MIPS systems running in big-endian mode. Shade thus avoids
the more complicated simulation of little-endian access. Similar-
ly, Shade-MIPS.V8 does not check for overflows that would cause
exceptions on MIPS systems. Several MIPS features such as
unaligned memory access instructions and details of floating-point
rounding have no direct V8 SPARC counterparts, so Shade-
MIPS.V8 simulates them, albeit more slowly. Many immediate
fields are 16 bits on the MIPS and 13 bits on the SPARC; where
target immediates do not fit in 13 bits, extra SPARC instructions
are used to place the immediate value in a host scratch register.
This difference complicates the translation compiler.

Some host/target differences help Shade-MIPS.V8’s efficiency.
In particular, the MIPS architecture employs values stored in gen-
eral purpose integer registers in place of integer condition codes.
This reduces contention for the host condition codes [CK93].

4.2. Shade-V9.V8

Shade-V9.V8 simulates a V9 SPARC target and runs on a V8
SPARC host. The principal problems of simulating V9 applica-
tions on V8 hosts are wider integer registers and additional condi-

1. Here and elsewhere, “on average” means the geometric mean of dynamically
weighted values over the SPEC89 benchmarks.



____________________________________________________________________________________________________
native icount0 icount1 icount2 icount3 icount4 icount5

Shade app
inst time inst time inst time inst time inst time inst time inst time________________________________________________________________________________________________________________________________________________________________________________________________________

gcc 1.0 1.0 5.5 6.1 5.9 6.6 8.8 14.3 13.5 21.7 15.5 31.2 63.7 84.2
V8.V8

doduc 1.0 1.0 2.8 2.8 2.9 3.1 5.5 8.8 9.4 14.0 11.5 24.1 36.3 60.3________________________________________________________________________________________________________________________________________________________________________________________________________
espresso 1.0 NA 9.5 1.2K 9.8 1.2K 11.5 2.2K 15.8 3.0K 17.8 4.8K 42.0 8.5K

V9.V8
doduc 1.0 NA 6.1 1.1K 6.3 1.2K 8.1 2.4K 11.8 3.3K 13.9 5.4K 38.5 11.5K____________________________________________________________________________________________________

Table 1. Dynamic expansion: instructions and CPU time

tion codes. Simulating a 64-bit address space would be a prob-
lem, but so far it has been avoided.

The new V9 instructions present few new problems, but there are
many new instructions. As a rough measure of relative simula-
tion complexity, consider that, given Shade-V8.V8, it took about
3 weeks to develop Shade-MIPS.V8 and about 3 months to
develop Shade-V9.V8 to the point where each could run SPEC89.

Shade usually generates a short sequence of V8 instructions for
each V9 instruction. For example, Figure 7 shows the translation
body fragment for a V9 add instruction. Complicated instruc-
tions are compiled as calls to simulation functions.

ldd [%vs + vs_r1], %s0 ! s0/s1: virt. r1
ldd [%vs + vs_r2], %s2 ! s2/s3: virt. r2
addcc %s1, %s3, %s5 ! add lower 32 bits
addx %s0, %s2, %s4 ! add upper 32 bits
std %s4, [%vs + vs_r3] ! virt. r3: s4/s5
inc 4, %vpc

Figure 7. Shade-V9.V8 translation body

The V9 target’s 64-bit registers are simulated with register pairs
on the V8 host. This doubles memory traffic for each register
moved between the virtual state structure and the host registers. It
also increases the number of such moves, since only half as many
target registers can be cached in the host’s registers.

V9 SPARC has two sets of condition codes. One set is based on
the low order 32 bits of the result (just as in V8), and the other on
the full 64 bits of the result. The host integer condition codes are
often required (as in the add example above) to simulate 64-bit
operations which themselves do not involve condition codes.
This increases the number of contenders for the host condition
codes [CK93].

Shade-V9.V8’s performance is likely to degrade as compilers take
advantage of more V9 features. For example, V9 supports more
floating point registers and floating point condition codes than V8.
V9 compilers that make better use of these registers will increase
register pressure on the V8 host. Also, under Shade-V9.V8, ap-
plications are only allowed access to the lower 4GB of virtual
memory. Thus, although programs manipulate 64-bit pointers,
Shade-V9.V8 ignores the upper 32-bits of addresses during the
actual accesses (load, store, register indirect jump, system call).
Shade-V9.V8 will run slower if and when it needs to simulate a
full 64-bit address space.

5. Performance
This section reports on the performance of Shade. For Shade-
V8.V8, performance is reported relative to native execution.
Since SPARC V9 platforms are still under construction, Shade-
V9.V8 figures do not include relative performance. The standard
Shade configuration used in these tests is a 4MB TC that holds 220

host instructions, and a 256KB TLB that holds 213 (8K) lines,
each with 4 address pairs.

The benchmarks are from SPEC89, compiled with optimizations
on. For Shade-V8.V8, the 001.gcc1.35 and 015.doduc bench-
marks were used; for Shade-V9.V8, 008.espresso and 015.doduc
were used.

The measurements use six Shade analyzers, each performing a
different amount of tracing. The analyzers use Shade to record
varying amounts of information, but everything Shade records is
then ignored. This “null analysis” was done to show the break-
down of time in Shade. With real analyzers, analysis dominates
the run time and Shade is not the bottleneck. The analyzers are:

icount0: no tracing, just application simulation.

icount1: no tracing, just update the traced instruction counter
(ntr) to permit instruction counting.

icount2: trace PC for all instructions (including annulled); trace
effective memory address for non-annulled loads and stores. This
corresponds to the tracing required for cache simulation.

icount3: same as icount2 plus instruction text, decoded op-
code value, and, where appropriate, annulled instruction flag and
taken branch flag.

icount4: same as icount3 plus values of all integer and float-
ing point registers used in instruction.

icount5: same as icount4 plus call an empty user trace func-
tion before and after each application instruction.

Table 1 shows how much slower applications run under Shade
compared to native execution. The inst column shows the aver-
age number of instructions that were executed per application in-
struction. The time column shows the CPU (user + system) time;
for Shade-V8.V8 as a ratio to native time, for Shade-V9.V8 as ab-
solute time in seconds.2

Shade is usually more efficient on floating-point code (doduc)
than on integer code (gcc and espresso). Floating-point code has
larger basic blocks, which both improves host register allocation
and reduces the number of branches and thus the number of look-
up operations to map the target PC to the corresponding transla-
tion. Floating-point code also uses more expensive operations, so
relatively more time is spent doing useful work. The relative
costs are closer for higher levels of tracing, since the overhead of
tracing is nearly independent of the instruction type.

Shade-V9.V8 is less efficient than Shade-V8.V8, and less efficient
for integer than floating point applications. The wider V9 words
cause more memory traffic and more contention for host registers.
V9 also has more condition codes and is thus more work to simu-
late. On average, Shade-V9.V8 simulates V8 (sic) integer
SPEC89 benchmarks 12.2 times slower than they run native, and
V8 floating point SPEC89 benchmarks 4.0 times slower. Shade-
V8.V8 simulates these same benchmarks 6.2 and 2.3 times slower
than they run native, respectively.

Table 2 shows how much larger dynamically (i.e. weighted by
number of times executed) a translation is than the application
code it represents. Input size is the dynamically-weighted average
size of a target basic block. Output size is the dynamically-
weighted average number of instructions in a translation and the

2. Instruction counts were gathered by running Shade on itself: the superior Shades
ran the icount1 analyzer while the subordinate (traced) Shades ran the indicat-
ed analyzers and benchmarks. Overall running times were collected using
elapsed time timers on the host. Percentage time distribution (shown below) was
measured using conventional profiling with cc -p and prof.



____________________________________________________________________________________
input output size___________________________________________________________Shade app
size icount0 icount1 icount2 icount3 icount4 icount5________________________________________________________________________________________________________________________________________________________________________

gcc 5.1 20 4.7x 26 6.2x 41 9.1x 67 15x 77 17x 193 40x
V8.V8

doduc 12.5 33 4.1x 39 5.1x 73 8.0x 126 13x 153 15x 427 39x________________________________________________________________________________________________________________________________________________________________________
espresso 6.1 44 8.2x 49 9.5x 61 11.6x 91 17x 104 19x 246 44x

V9.V8
doduc 13.6 63 5.5x 69 6.4x 94 8.3x 147 13x 177 15x 432 37x____________________________________________________________________________________

Table 2. Code translation expansion, dynamically weighted
___________________________________________________________________________________

Shade app location icount0 icount1 icount2 icount3 icount4 icount5______________________________________________________________________________________________________________________________________________________________________
Compiler 8.77% 10.14% 5.82% 4.59% 3.86% 25.05%
TC 51.13% 52.56% 74.62% 82.22% 86.33% 61.26%
Sim 39.00% 36.09% 19.01% 12.83% 9.55% 4.97%

gcc

Analyzer 0.00% 0.03% 0.01% 0.00% 0.00% 8.61%___________________________________________________________________________
Compiler 0.22% 0.35% 0.16% 0.11% 0.08% 0.06%
TC 80.69% 81.56% 91.50% 95.20% 96.37% 87.87%
Sim 19.04% 17.97% 8.32% 4.67% 3.55% 2.11%

V8.V8

doduc

Analyzer 0.00% 0.07% 0.00% 0.00% 0.00% 9.96%______________________________________________________________________________________________________________________________________________________________________
Compiler 0.30% 0.35% 0.23% 0.20% 0.13% 0.10%
TC 61.92% 62.73% 78.98% 84.26% 89.90% 81.27%
Sim 37.74% 36.84% 20.76% 15.52% 9.95% 5.43%

espresso

Analyzer 0.00% 0.04% 0.00% 0.01% 0.00% 13.19%___________________________________________________________________________
Compiler 0.11% 0.15% 0.09% 0.07% 0.05% 0.05%
TC 61.92% 64.35% 80.55% 85.93% 90.65% 85.82%
Sim 37.96% 35.47% 19.35% 14.00% 9.30% 4.77%

V9.V8

doduc

Analyzer 0.00% 0.03% 0.00% 0.01% 0.00% 9.36%___________________________________________________________________________________
Table 3. Run-time execution profile summary

________________________________________________________________________
Shade app icount0 icount1 icount2 icount3 icount4 icount5________________________________________________________________________________________________________________________________________________

gcc 179.7 171.25 127.2 94.0 87.5 51.4
V8.V8

doduc 245.4 271.2 162.6 111.9 102.1 58.9________________________________________________________________________________________________________________________________________________
espresso 451.1 486.7 423.6 331.3 308.4 191.7

V9.V8
doduc 123.5 151.4 123.7 91.9 84.2 84.6________________________________________________________________________

Table 4. Code generator instructions per instruction generated

code space expansion over the input size. Output sizes don’t
directly correlate to running time, since portions of most transla-
tions are conditionally executed, and since some instructions are
executed outside of the TC in the translation compiler, simulation
functions, and the analyzer.

Table 3 shows the percentage of total run time spent in various
phases of execution. Compiler denotes the time spent in the
translation compiler, TC the time spent executing code in the
Translation Cache, Sim the time spent in functions which are
called from the TC to simulate, or assist in simulating application
instructions, and Analyzer the time spent in the user’s analyzer,
including user trace functions which are called from the TC.

The time distribution is determined by several factors. Better op-
timization takes longer and produces faster running code, both of
which increase the percentage of time spent in code generation.
The simulation time (Sim) comes mostly from saving and restor-
ing condition codes [CK93], simulating save and restore, and
from main loop execution; larger target basic blocks tend to
reduce condition code and main loop overheads. A small TC in-
creases the frequency with which useful translations are discard-
ed. A small or ineffective TLB increases the frequency with
which useful translations are lost. Translations that collect a lot of
information take longer to run, and thus reduce the percentage of
time spent in simulation functions, even though their absolute run-
ning time is unchanged. All analyzers used in these tests are trivi-
al, though icount5 includes null functions that are called before
and after each application instruction.

Table 4 shows the average number of instructions that are execut-
ed by the code generator in order to generate one host instruction.
The number of instructions per instruction in the code generator is
a function of the instruction set architecture of the host and target
machines and the level of tracing. Note that without translation
caching, the compiler would be invoked every time a target in-

struction was run and applications would run hundreds or
thousands of times slower. Measurements of the TC and TLB ef-
fectiveness are reported elsewhere [CK93].

6. Related Work
This section describes related work and summarizes the capabili-
ties and implementation techniques of other simulators, virtual
machines and tracing tools. In most cases we try to evaluate the
capabilities of each tools’ technology, but as we are evaluating ac-
tual tools, we sometimes (necessarily) evaluate limits of a particu-
lar implementation.

6.1. Capabilities and Implementation

Table 5 summarizes the capabilities and implementations for a
number of tools. The columns show particular features of each
tool and are grouped in three sections. The first group, Purpose
and Input Rep. describe the purpose of the tool and how a user
prepares a program in order to use the tool. The second group of
columns, Detail , MD , MP , Signals and SMC OK , shows the level
of detail of the simulation, and thus the kinds of programs that can
be processed by the tool. The third group of columns,
Technology and Bugs OK shows the implementation technology
used and the tool’s robustness in the face of application errors.
The columns are described in more detail below.

Purpose describes how the tool is used: for cross-architecture
simulation (sim); debugging (db); for address tracing or memory
hierarchy analysis (atr); or for other, more detailed kinds of trac-
ing (otr). Tools marked tbC are tool-building tools and usually
use C as the extension language [NG88].

Input describes the input to the tool. Processing a high-level
language input (hll) can have the best portability and best optimi-
zation but the tool can only be used for source programs written in
the supported languages [VF94] and can’t generally be used for



___________________________________________________________________________________________________________________________
Input SMC Bugs

Name Reference(s) Purpose
Rep.

Detail MD MP Signals
OK

Technology
OK______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Accelerator [AS92] sim exe us Y N Y Y scc+gi Y
ATOM [SE94] tbC exe∗ u N N Y N aug N
ATUM [ASH86] sim/atr exe us Y Y= Y Y emu Y
dis+mod+run [FC88] sim/atr asm u N N N N scc N
Dynascope [Sosič92] db/atr/otr hll u N N S Y pdi Y
Executor [Hostetter93] sim exe u N N Y Y pdi Y
g88 [Bedichek90] sim/db exe usd Y N Y Y tci Y
gsim [Magnusson93, Magnusson94] sim/db/atr/otr/tbC exe usd Y Y1 Y Y tci+dcc Y
Mable [DLHH93] sim/db/atr exe u N Y1 N Y ddi N
mg88 [Bedichek94] sim/db/atr/otr/tbC exe usd Y Y1 Y Y tci Y
Migrant [SE93] sim exe u Y N Y Y scc+emu Y
Mimic [May87] sim exe u N N N N dcc N
MINT [VF94] atr exe u N Y1 Y N pdi+dcc Y∗
Moxie [CHKW86] sim exe u N N Y N scc N
MX/Vest [SCKMR93] sim exe u N Y= Y Y scc+gi Y
Purify [HJ92] db exe∗ u N N Y N aug Y
qp/qpt [LB94] atr/otr exe u N N N N aug N
SELF [CUL89] sim exe u N N Y Y dcc Y
SoftPC [Nielsen91] sim exe u(s)d N N Y Y dcc Y
Spa [Irlam93] atr exe u N N S Y ddi N
SPIM [HP93] sim/atr exe u N N Y N pdi Y
ST-80 [DS84] sim exe u N N Y Y dcc Y
MPtrace [EKKL90] atr asm u N Y= S N aug N
Pixie [MIPS86] atr exe∗ u Y N Y N aug N
Pixie-II [Killian94] atr/otr/db exe∗ us Y N Y S scc N
Proteus [BDCW91] atr hll u N Y1 N S aug N
RPPT [CMMJS88] atr hll u N Y1 N N aug N
Titan [BKW90] atr exe us Y N Y N aug N
TRAPEDS [SJF92] atr asm us Y Y= S N aug N
Tango Lite [GH92] atr asm u N Y1 N S aug N
WWT [RHLLLW93] atr/otr exe u Y Y+ Y N emu+aug+ddi Y
Z80MU [Baumann86] sim exe u(s) N N Y Y ddi Y___________________________________________________________________________________________________________________________
Shade [CK93] sim/atr/otr/tbC exe u N N Y Y dcc N___________________________________________________________________________________________________________________________

Table 5. Summary of some related systems

studying the behavior of other translation tools (compilers, etc.).
Consuming assembly code (asm) is less portable than a high-level
language but can provide more detailed information. To the ex-
tent that assembly languages are similar, such tools may be rela-
tively easy to retarget, though detailed information may still be
obscured. Finally, using executable code as input (exe) frees the
user from needing access to the source and the (possibly complex)
build process. However, information is usually reported in
machine units, not source constructs. Some tools use symbol
table information to report trace information symbolically. Others
also need symbolic information to perform translation (exe∗).

Detail describes how much of the machine is simulated. Most
tools work with only user-level code (u); some also run system-
level code (s); and system mode simulation generally requires
device emulation (d). Some target machines have no system
mode, so simulation can avoid the costs of address translation and
protection checks; these machines have the system mode marked
in parenthesis.

MD reports whether the tool supports multiple protection domains
and multitasking (multiple processes per target processor). This
usually implies support for system mode operation and address
translation. Target systems that multitask in a single protection
domain are listed as N . MP tells whether the tool supports multi-
ple processor execution; Y1 indicates that the tool uses a single
host processor, Y= indicates that the tool runs as many target pro-
cessors as host processors, Y+ that it can run more target proces-
sors than host processors. Simulating a multiprocessor generally
introduces additional slowdown at least as big as the number of
target processors divided by the number of host processors.

Supporting signals is generally difficult since execution can be in-
terrupted at any instruction and resumed at any other instruction,

but analysis and instrumentation may use groups of instructions to
improve simulation efficiency. The Signals column is Y for tools
that can handle asynchronous and exceptional events. S indicates
that the tool is able to deal with some but not all aspects; for ex-
ample, signals may be processed so the program’s results are
correct, but no address trace information is generated.

SMC OK describes whether the tool is able to operate on pro-
grams where the instruction space changes dynamically. Dynam-
ic linking is the most common reason, but there are a number of
other uses [KEH91]. Static rewrite tools can sometimes (S) link
dynamically to statically-rewritten code, but the dynamically-
formed link can’t be rewritten statically and thus may go untraced.

Technology describes the general implementation techniques used
in the tool [Pittman87]. An “obvious” implementation executes
programs by fetching, decoding, and then interpreting each in-
struction in isolation. Most of the implementations optimize by
predecoding and then caching the decoded result; by translating to
host code to make direct use of the host’s prefetch and decode
hardware [DS84]; and by executing target instructions in the con-
text of their neighbors so that target state (e.g. simulated registers)
can be accessed efficiently (e.g. from host registers) across target
instruction boundaries. The implementations are:

• Hardware emulation including both dedicated hardware and mi-
crocode (emu).

• The “obvious” implementation, a decode and dispatch inter-
preter (ddi).

• Predecode interpreters (pdi) that pre-convert to a quick-to-
decode intermediate representation. The IR can be many
forms; a particularly fast, simple, and common form is threaded
code (tci).



_____________________________________________________________________________________________________________
Translation Performance

Name Reference(s)
Units

Assumptions
(Slowdown)

Notes
__________________________________________________________________________________________________________________________________________________________________________________________________________________________
Accelerator [AS92] ebb nr, bo, ph, regs 3 pages
dis+mod+run [FC88] bb nr 10
Executor [Hostetter93] proc nr 10 mixed code
g88 [Bedichek90] i nr, bo 30 pages
gsim [Magnusson93, Magnusson94] bb nr, bo 30 pages
Mable [DLHH93] i 20-80
mg88 [Bedichek94] i nr, bo 80 pages
Migrant [SE93] ebb nr,bo −
Mimic [May87] ebb nr, bo, regs 4 no fp, no align, +compile
Moxie [CHKW86] bb nr 2
MX/Vest [SCKMR93] ip bo 2 mixed code, fp prec
SELF [CUL89] ip none N/A VM spec
SoftPC [Nielsen91] 10
SPIM [HP93] i nr, bo 25
ST-80 [DS84] proc none N/A VM spec
Z80MU [Baumann86] i nr, bo, regs − mixed code_____________________________________________________________________________________________________________

3-6 same machine
Shade [CK93] ebb nr, bo

8-15 different machines (tracing off)_____________________________________________________________________________________________________________
Table 6. Summary of some cross-architecture simulators

• Static cross-compilation (scc) which decodes and dispatches
during cross-compilation, avoiding essentially all runtime
dispatch costs. As a special case, where the host and target are
the same, the static compiler merely annotates or augments
(aug) the original program with code to save trace data or emu-
late missing instructions. Note that conversion is limited by
what the tool can see statically. For example, dynamic linking
may be hard to instrument statically. Limited static information
also limits optimization. For example, a given instruction may
in practice never be a branch target, but proving that is often
hard, so the static compiler may be forced to produce overly-
conservative code.

• Dynamic cross-compilation (dcc) is performed at runtime and
thus can work with any code including dynamically-linked li-
braries. Also, dynamic cross-compilers can perform optimistic
optimizations and recompile if the assumptions were too strong
[Johnston79, SW79, May87, HCU91, CK93]. However, since the
compiler is used at run time, translation must be fast enough
that the improved performance more than pays for the overhead
of dynamic compilation [KEH91]; in addition, code quality may
be worse than that of a static cross-compiler [AS92, SCKMR93]
since dynamic code analysis may need to “cut corners” in order
to minimize the compiler’s running time.

Where interpreter specifics are unavailable the tool is listed as us-
ing a general interpreter (gi). Many tools listed as aug and emu
execute most instructions using host hardware.

Note that input forms lacking symbolic information — exe espe-
cially — can be hard to process statically because static tools have
trouble determining what is code and what is data and also have
trouble optimizing over multiple host instructions [May87, LB94].
By contrast, tools that perform dynamic analysis (including both
interpreters and dynamic cross-compilers) can discover the
program’s structure during execution. Translation techniques can
be mixed by using one technique optimistically for good perfor-
mance and another as a fallback when the first fails. However,
such implementations have added complexity because they rely
on having two translators [AS92, SCKMR93, Magnusson94, VF94].

Bugs OK describes whether the tool is robust in the face of appli-
cation errors such as memory addressing errors or divide-by-zero
errors. Typically, a simulator that checks for addressing errors re-
quires extra checks on every instruction that writes memory. In
some systems the checks are simple range checks; tools that sup-
port multiple address spaces and sparse address spaces generally
require full address translation [Bedichek90]. Y∗ indicates that
checking can be turned on but performance is worse.

6.2. Cross-Architecture Simulation

Table 6 summarizes various features of tools that are used for
cross-architecture simulation. The Translation Units column
shows translation-time tradeoffs between analysis complexity and
performance. Assumptions shows assumptions about the relation-
ship between the host and target machines; these assumptions are
usually used to simplify and speed the simulator. Performance
shows the approximate slowdown of each tool compared to native
execution. Notes shows special or missing features of each simu-
lator. The columns are described in detail below.

Translation units are the number of (target) instructions that are
translated at a time. Using bigger chunks reduces dispatching
costs and increases opportunities for optimization between target
instructions. Larger translation units also typically require better
analysis or dynamic flexibility in order to ensure that the program
jumps always take a valid path [May87, SCKMR93, LB94]. Trans-
lation units include: individual instructions (i), basic blocks (bb),
extended basic blocks with a single entry but many exits (ebb),
procedural (proc), or interprocedural (ip).

Assumptions describes assumptions that a tool makes about the
relationship between the host and target machines, including byte
ordering (bo); numeric representation (nr), including size and for-
mat; the number of registers on the host and target machines
(regs), and access to the host machine’s privileged hardware (ph)
in order to implement system-level simulation.

Performance is an estimate of the number of (simple) instruc-
tions executed per (simple) simulated instruction. N/A indicates
“not applicable” because the target is a virtual machine. A dash
(−) indicates unknown or unreported performance. These esti-
mates are necessarily inexact because performance for the dif-
ferent tools is reported in different ways.

Notes describes particular features: pages for detailed memory
simulation; no fp for simulation that omits floating-point numbers;
fp prec for simulation that can be set either to run fast or to faith-
fully emulate the target machine; no align for tools that omit
simulation of unaligned accesses; +compile for dynamic com-
pilers where compile time is not included in the performance but
where it would likely have a large effect; VM spec for tools that
emulate a virtual machine that has been designed carefully to im-
prove portability and simulation speed; mixed code for simulators
that can call between host and target code so that the application
can, e.g., dynamically link fast-running host-code libraries.



6.3. Comparison

Shade improves over many other tools by simulating important
machine features such as signals and dynamic linking. It im-
proves over many dynamic compilation tools by using techniques
that reduce simulation overhead while maintaining the flexibility
and code quality of dynamic compilation. It improves over many
tracing tools by dynamically integrating cross-simulation and trac-
ing code so that it can trace dynamically-linked code, can handle
dynamic changes in tracing level, and yet can still save detailed
trace information efficiently.

Most tools avoid cross-architecture execution or omit some
machine features. These choices improve execution efficiency but
limit the tool’s applicability. Some exceptions are g88 deriva-
tives [Bedichek90, Magnusson93, Bedichek94, Magnusson94] which
are somewhat less efficient than Shade and also Accelerator
[AS92] and MX/Vest [SCKMR93] which do not perform any trac-
ing and which use two translators, one optimistic and one conser-
vative, to achieve high efficiency. Shade supports cross-
architecture execution, and faithfully executes important machine
features such as signals and self-modifying code (and thus dynam-
ic linking), so it can be used on a wide variety of applications.

Simulators that use dynamic compilation are typically flexible and
the compiled code performs well. However, many previous sys-
tems have imposed limitations that Shade eliminates. For exam-
ple, Mimic’s compiler [May87] produces high-quality code, but at
such an expense that overall performance is worse than Shade;
Shade reduces compilation overhead by allowing multiple transla-
tions per application instruction, by using chaining to reduce the
cost of branches, and using a TLB to minimize the space overhead
of branches. MINT [VF94] is unable to simulate changing code
and never reclaims space used by inactive translations.

Tracing tools typically produce only address traces, and often run
only on the machine for which the trace is desired. Even tools
that allow cross-architecture simulation tend to limit the generali-
ty of the machine simulation or of the tracing facilities in order to
maintain efficiency [FC88, HP93]. Shade supports cross-
architecture tracing and simulates user-mode operation in detail.
It currently lacks kernel-mode tracing facilities provided by some
other tools though some of these tools limit machine features
and/or require hand-instrumentation of key kernel code. Shade
collects more trace information than most other tools, though it
lacks the timing-level simulation of mg88 [Bedichek94]. With
Shade, the analyzer can select the amount of trace data that it col-
lects, and analyzers that consume little trace data pay little tracing
overhead. Thus, it is typically the analysis tools that limit overall
performance.

Of the tool building tools listed, all permit extended tracing;
Shade provides the most efficient yet variable extensibility, and
only Shade also inlines common trace operations. Shade
analyzers have used both C and C++ as the extension language
[NG88]. We note also that although Shade is not designed for de-
bugging, Shade-V9.V8 has been used as the back end of a de-
bugger [Evans92].

Shade’s flexibility and performance does come at a penalty. For
example, Shade performs inter-instruction analysis and host code
generation; this makes Shade more complex and less portable
than, e.g., g88. Shade also presently lacks multiprocessor and
kernel mode; supporting them would make Shade slower since
they complicate simulation (e.g. with address translation on loads
and stores) and would increase translated code size.

7. Conclusions
Shade is a custom trace generator that is both fast and flexible,
providing the individual features of other tracing tools together in
one tool. Shade achieves its flexibility by using dynamic compila-

tion and caching, and by giving analyzers detailed control over
data collection. Thus analyzers pay for only the data they use.
Since Shade is fast, analyzers can recreate traces on demand in-
stead of using large stored traces. Shade’s speed also enables the
collection and analysis of realistically long traces. Finally, Shade
simulates many machine details including dynamic linking, asyn-
chronous signals and synchronous exceptions. By providing a de-
tailed simulation and by freeing the user from preprocessing steps
that require source code and complicated build procedures, Shade
satisfies a wide variety of analysis needs in a single tool.
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