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Abstract
In this paper we evaluate the atomic region compiler abstrac-

tion by incorporating it into a commercial system. We find that
atomic regions are simple and intuitive to integrate into an x86
binary-translation system. Furthermore, doing so trivially enables
additional optimization opportunities beyond that achievable by
a high-performance dynamic optimizer, which already implements
superblocks.

We show that atomic regions can suffer from severe perfor-
mance penalties if misspeculations are left uncontrolled, but that
a simple software control mechanism is sufficient to reign in all
detrimental side-effects. We evaluate using full reference runs of
the SPEC CPU2000 integer benchmarks and find that atomic re-
gions enable up to a 9% (3% on average) improvement beyond the
performance of a tuned product.

These performance improvements are achieved without any
negative side effects. Performance side effects such as code bloat
are absent with atomic regions; in fact, static code size is reduced.
The hardware necessary is synergistic with other needs and was
already available on the commercial product used in our evalua-
tion. Finally, the software complexity is minimal as a single devel-
oper was able to incorporate atomic regions into a sophisticated
300,000 line code base in three months, despite never having seen
the translator source code beforehand.

Categories and Subject Descriptors: D.3.4 [Software]: Program-
ming Languages–Processors:Compilers, Optimization, C.0 [Com-
puter Systems Organization]: General–Hardware/software inter-
faces
Keywords: Atomicity, Checkpoint, Optimization, Speculation,
Dynamic Translation
General Terms: Performance

1. Introduction
After decades of favorable semiconductor scaling, hardware de-
signers now face a much more challenging regime characterized by
limited voltage scaling, severe power and thermal limits, and wire
dominated delays. In response, hardware proposals for increasing
single-thread performance face a strict standard: performance im-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’10, March 13–17, 2010, Pittsburgh, Pennsylvania, USA.
Copyright c© 2010 ACM 978-1-60558-839-1/10/03. . . $10.00

provements must be provided without undue increase in power and
complexity. For example, designers of the Intel R©Pentium R©M mi-
croprocessor only accepted microarchitectural proposals that cost
less than 3% in additional power for every 1% of performance
improvement[7]. In the power and complexity conscious environ-
ment of today, the constraints are even more severe.

New compiler optimizations offer an opportunity to both im-
prove the performance of a single thread as well as reduce power
consumption, but developing optimizations that surpass the state-
of-the-art typically involves complex implementations that are time
consuming and difficult to develop. Therefore, cost-effective hard-
ware that can aid a compiler in achieving new heights of perfor-
mance are of particular interest.

One such feature is hardware atomicity: the execution of a re-
gion of code either completely or not at all[14]. Using the hardware
atomicity primitive, a compiler can easily construct atomic regions
that trivially expose speculative opportunities to classical optimiza-
tions. These atomic regions enable a compiler to optimize common
program paths by simply removing rarely-taken paths. Should a re-
moved path be needed, hardware discards all speculative updates,
rolls back the atomic region and then resumes execution at a non-
speculatively optimized version of the same code.

Our previous work has already demonstrated that atomic re-
gions, by facilitating improved code generation in a JVM, can
improve the performance of Java∗programs by 10% on average.
However, our work relied on short simulations using a modified
JVM and therefore suffered from several experimental shortcom-
ings. For example, we could not measure extra runtime compila-
tion costs that might overwhelm the benefits achieved. Likewise, an
atomic region optimization may become unprofitable as a program
changes phases and complete program runs are necessary to fully
observe and properly react to such effects. Finally, our evaluation
and implementation focused on managed languages and ignored
pre-compiled native binaries.

Our previous work also presented atomic regions as a simple
and effective alternative to other more complicated abstractions
such as the superblock. A compiler can use the atomic region ab-
straction to isolate frequently executed program paths from cold
paths, which enables unmodified optimizations to trivially exploit
speculative opportunities. In contrast, the superblock requires new
compiler optimizations to identify and exploit speculative opportu-
nity and often relies on complex compensation code to guarantee
correctness if a misspeculation occurs.

However, our previous evaluation used as its baseline an opti-
mizing compiler which makes no use of superblocks. It left open
the question of whether or not atomic regions offer utility in an in-
frastructure that already makes heavy use of superblocks. Likewise,
the atomic region abstraction presumes the existence of atomic ex-

∗ Other names and brands may be claimed as the property of others.
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Figure 1. Potential for atomic region optimizations. Optimization region for method OaGetObject from vortex. (a) control flow graph for
the optimization region with its hot path highlighted, (b) dataflow graph and schedule for the region as optimized by CMS using superblocks,
(c) atomic region representation of the same control flow graph after cold paths have been converted into asserts, (d) dataflow graph and
schedule after the atomic region has been optimized. Each node in the dataflow graphs depicts an Efficeon operation: the two left columns
depict memory operations, the next two columns depict integer operations and the rightmost column depicts branches. Each arrow in the
dataflow graph depicts a true dependence. Note that branch conditions can be consumed the same cycle they are produced.

ecution hardware and therefore a fair discussion requires providing
similar hardware features for superblocks.

To address these shortcomings, this work integrates atomic re-
gions into a binary translator composed of co-designed hardware
and software. Specifically, we use a Transmeta∗development sys-
tem which includes a late-model Transmeta Efficeon∗processor,
source code to the Transmeta Code Morphing Software∗(CMS),
and the hardware necessary to flash a modified CMS back onto
the system. The Efficeon processor already includes precisely the
support advocated for atomic regions, namely fast hardware check-
point and rollback primitives (Section 3).

Using this hardware platform, we make the following contribu-
tions:

• We demonstrate that atomic regions are easy to integrate
into a mature, high-performance compilation system. The
Transmeta Code Morphing Software is a dynamic translation
product capable of high-performance execution of x86 code on
dissimilar hardware. It has been meticulously engineered and
has undergone a decade of dedicated development. Incorpo-
rating a new compilation strategy into such a system is ordi-
narily a major undertaking. Nevertheless, the simplicity of the
atomic region abstraction facilitated its incorporation in just
three months by a single developer—despite never having seen
any of the 300,000 lines of CMS source code beforehand. We
elaborate upon this point in Section 4.
• We argue that atomic regions complement the use of su-

perblocks. We find that while the support for atomic regions
does improve the performance of CMS, which makes heavy use
of superblocks1, atomic regions are a complement rather than a
substitute for superblocks.

1 CMS actually uses hyperblocks, which for this discussion we consider a
subset of superblocks.

• We develop a simple and effective mechanism for reacting
to profile changes. With atomic regions, recovering from a
misspeculation is easy but costly. Recovery requires hardware
rollback, which discards work, and redirecting execution to an
alternate, often low-performance, implementation of the same
code. Therefore, identifying unprofitable speculations and dis-
abling them is critical to performance. In Section 4.3 we de-
scribe a simple and sufficient mechanism for doing so.
• We evaluate atomic regions in a real hardware system. Us-

ing real hardware, we are able to measure the effects of atomic
regions on complete SPEC CPU2000 runs. Our results include
all system effects including compilation overhead and misspec-
ulations triggered by profile changes (Section 5).

We continue in Section 2 with a simple example to help illus-
trate how atomic regions are used and how they compare to opti-
mization strategies used in high-performance compiler infrastruc-
tures.

2. Illustrative Comparison
In this section, we show how the atomic region abstraction benefits
a mature compilation system, even one designed around the su-
perblock. We use an example from the SPEC CPU2000 benchmark
255.vortex to illustrate our findings.

Shown in Figure 1(a) is the control flow graph (CFG) for a
portion of the method OaGetObject. The portion shown is the
optimization region selected by the Transmeta CMS translator. This
is one of the hottest regions in vortex and accounts for 7% of
the overall execution time. A single hot path exists through this
optimization region, including 56 x86 instruction and nine cold
exits.

CMS uses superblock formation in conjunction with a suite of
classical optimizations to generate the Efficeon code and schedule
shown in Figure 1(b). This code has been aggressively scheduled
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and optimized including the speculative hoisting of loads, reorder-
ing of memory operations and removal of redundant operations.
As described in previous work[5], this requires no compensation
code because CMS makes use of the atomic execution hardware
provided by Efficeon.

Ignoring cache misses, this optimized code emulates the origi-
nal 56 x86 instructions by executing 72 Efficeon operations in 26
cycles or an average of 2.15 x86 instructions per cycle (IPC) and
2.77 IPC in Efficeon operations. The code generated by CMS is of
high quality: the static schedule produced has a similar height to
the dynamic schedule achieved by a modern out-of-order processor
given the same number of functional units.

mov  112(%esp),%esi
...
mov  0x878(%ebp),%esi
...

mov  0(%ebp),%edi
mov  (%edi,%esi,4),%edi
mov  %edi,24(%esp)
mov  -28(%edi),%edi
...

mov  24(%esp),%edi
...

...
mov  0(%ebp),%ebx
mov  (%ebx,%esi,4),%ebp
mov  0(%ebp,%edx,4),%ebx
mov  112(%esp),%edx
...

F

G

H

mov  112(%esp),%t1
...
mov  0x878(%ebp),%esi
...

mov  0(%ebp),%t2         
mov  (%t2,%esi,4),%t3
mov  %t3,24(%esp)
mov  -28(%edi),%edi
...

mov  %t3,%edi
...

...
mov  0(%ebp),%ebx
mov  %t3,%ebp
mov  0(%ebp,%edx,4),%ebx
mov  %t1,%edx
...
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Figure 2. CMS baseline optimization. CMS uses temporaries to
eliminate three redundant loads and eliminate a fourth load by
forwarding a previously stored value. Original x86 code is shown
on the left. The code on the right illustrates the effect of optimized
CMS code.

Figure 2 shows a few of the optimizations that CMS applies to
the region from Figure 1(a). In particular, CMS is able to identify
three redundant load operations and eliminate them by buffering
previously loaded values into temporary registers. Likewise, CMS
forwards a value stored to the stack to a later consumer, which
obviates a fourth load. In each of these cases, CMS uses liveness
analysis to prevent unnecessary register copying (for example, the
temporaries introduced in block G are never copied to register edi
because of a subsequent kill).

Although the code generated by CMS is already of high qual-
ity, hand inspection shows that significant optimization opportunity
remains. Put simply, superblock scheduling and optimization has
enabled CMS to eliminate some redundancies, hoist critical oper-
ations past exits and generate a nearly optimal schedule, but it has
not enabled CMS to remove operations that are only needed along
cold exit paths.

Because the code generated by CMS already uses hardware
primitives to execute the region atomically, these additional opti-
mization opportunities can be trivially exposed by converting the
cold exits into asserts, as advocated by the atomic region abstrac-
tion (shown in Figure 1(c)).

An assert operation simply performs a conditional check to
verify that a cold exit has not been followed. If the cold exit is
followed, the assert triggers an abort which causes the entire atomic
region to be rolled back and redirects execution to code which
includes the cold exit. An assert therefore enables the compiler to
speculatively isolate frequently occurring paths in the CFG from
rarely taken exits.

test %ecx,%ecx
jne  0x811ef66

...

...
mov  112(%esp),%t1 
...
mov  %ebx,(%t1)
...
jne  0x811edb7

...
jne  0x811eda2

D

E

F

G

...
jae  0x811ed4b

...
mov  %t1,%edx
mov  %ebx,(%edx)
test %ecx,%ecx
jne  0x811ef5d

H

I

test %ecx,%ecx
assert.ne

...

...
mov  112(%esp),%t1 
...
mov  %ebx,(%t1)
...
assert.ne

...
assert.ne

D

E

F

G

...
assert.ae

...
mov  %t1,%edx
mov  %ebx,(%edx)
test %ecx,%ecx
assert.ne

H
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Figure 3. Optimizations enabled by atomic regions. Asserts
trivially expose speculative opportunities to classical optimizations.
For example, a partially dead store gains the appearance of a fully
dead store and a partially redundant exit computation appears fully
redundant.

Figure 3 demonstrates a few of the additional opportunities the
atomic region abstraction exposes in the same region from Fig-
ure 1(a). By converting cold exits into simple dataflow operations,
an assert provides speculative opportunities with a non-speculative
appearance. For example, after converting the cold exits in blocks
F, G, and H the partially dead store in block F appears fully redun-
dant to classical optimizations in CMS and is thereby eliminated. In
addition, the partially redundant branch exit computation in block
D becomes fully redundant after assert conversion (enabling the re-
moval of the redundancies in block I).

Figure 1(d) shows the optimized code and schedule that results
after converting cold exits into asserts. By removing the cold exits,
CMS is able to remove 15 additional Efficeon operations from the
region. Given fewer operations and fewer control-flow constraints,
the superblock scheduler generates a 27% shorter schedule. This
more aggressively optimized code now executes in 19 cycles at an
average x86 IPC of 2.95.

This example region clearly shows the performance potential
offered by the atomic region abstraction2. As we will show, the ben-
efits demonstrated in this example also translate into performance
gains for full programs running on a real system (for example, we
show a 9% performance improvement on reference runs of vortex).
We will further show that a simple control mechanism is all that is
necessary to avoid detrimental performance side effects.

3. Background
The Transmeta Efficeon, first released in 2003, utilizes a low com-
plexity design to provide high-performance and low-power x86

2 The example also implies that a compiler must choose the same optimiza-
tion scope for atomic regions as it would for superblocks. However, atomic
regions are more general than superblocks because they can contain arbi-
trary control flow and therefore can encapsulate larger optimization scopes.
While there could be a benefit to taking advantage of this difference, we do
not explore it in this paper.
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Figure 4. The Efficeon architecture. The Efficeon executes
molecules composed of a variable number of 32-bit packets. Each
packet includes a stop bit as well as a type field that statically en-
codes which functional unit it uses.

compatibility. The Efficeon hardware is a very long instruction
word (VLIW) processor that executes an entirely different instruc-
tion set than x86. The instruction set is designed to enable the Code
Morphing Software (CMS) software system to faithfully execute
x86 code through interpretation and by dynamically translating x86
code into high-performance native code.

In Section 3.1, we briefly describe the architecture of the Ef-
ficeon processor. A brief overview of CMS and how it is used to
provide high-performance execution of x86 binaries on the Efficeon
follows in Section 3.2.

3.1 Efficeon Processor Architecture
The Efficeon is an in-order VLIW processor, which is designed to
provide high-frequency execution of software-scheduled code. To
further simplify the design and reduce power, it does not provide
hardware interlocks or register scoreboarding and therefore relies
completely upon a compiler to correctly schedule dependent and
independent operations. To simplify the compiler’s task, Efficeon
provides hardware support for taking fast register and memory
checkpoints and for reordering memory operations.

Depicted in Figure 4, an Efficeon VLIW instruction, or molecule,
is variable length and composed of 32-bit packets. Each packet in-
cludes a stop bit, which denotes the end of a molecule. A molecule
may contain up to eight packets.

A packet typically encodes a functional operation, or atom, but
may also encode auxiliary information such as longer immediates
or memory alias protection. An Efficeon atom has a three-address
format and is analogous to an instruction from a load-store archi-
tecture. An atom is statically assigned to one of seven functional
units: two memory, two integer, two floating point and one branch.

The Efficeon processor provides hardware support for fast reg-
ister and memory checkpoints. The Efficeon has two copies of each
register: a shadowed and a working copy. Likewise, the Efficeon in-
cludes a speculative bit for each line in its data cache[18]. Between
checkpoints, all updates are speculatively written to either working
registers or the data cache. If a cache line is speculatively written,
its speculative bit is set and it is transitioned to the dirty state (after
first evicting any non-speculative dirty data on the line into a victim
cache). The hardware can commit speculative work in a single cycle
by copying the working registers onto their shadowed counterparts
and flash clearing all speculative bits in the data cache. Alterna-
tively, the hardware can rollback all speculative work by restoring
the working registers from their shadowed counterparts and flash

invalidating all speculative lines in the data cache. Section 4.1 de-
scribes the primitives used by software to control this commit and
rollback hardware.

The Efficeon also provides memory alias detection hardware,
which a compiler can use to guarantee the correctness of reordered
memory operations. Often memory operations do not alias, but
the compiler can not statically prove their independence. In these
situations, the compiler can generate code which includes alias
packets. If used to initiate protection of a coupled load or store
atom, an alias packet captures the memory address used by the
atom into an alias register. If used to detect an alias with a coupled
load or store atom, the alias packet compares the memory address
against the contents of one or more alias registers, and, if a match
is made, an alias fault is triggered. In this way, software can check
if speculatively-reordered loads alias with the stores they were
hoisted above. The alias hardware also enables the compiler to
eliminate redundant loads and stores in more situations[10].

The Efficeon shares many of the above architectural traits with
the Transmeta Crusoe∗that preceded it, but several key differences
exist[10]. Both processors have statically scheduled VLIW archi-
tectures but the Efficeon can issue seven atoms per cycle versus
four atoms in the Crusoe. To provide better code density, an Ef-
ficeon molecule is variable in length whereas a Crusoe molecule
may only be two or four packets long. Most relevant to this pa-
per, the Efficeon has more relaxed speculation support because it
buffers all speculative memory updates in a 64-KB first level data
cache whereas the Crusoe buffers all speculative memory updates
in a gated store buffer.

3.2 CMS Overview
The Transmeta Code Morphing Software[5] is a software system
designed to provide high-performance execution of x86 binaries on
Efficeon hardware. To accomplish this goal, it includes a robust
and high-performance dynamic binary translator, supported by a
software x86 interpreter. The translator is a large and well-tuned
software system which includes components to identify commonly-
executed regions of x86 code, convert the corresponding x86 in-
structions into a three-address intermediate representation (IR), and
then optimize, schedule, and deploy each translated region.

The first several times a group of x86 instructions is encountered
by CMS they will not be translated. Rather, they will be emulated
by the CMS interpreter. In doing so, CMS is able to collect a
dynamic execution profile of the x86 instructions as well as provide
a low-latency “cold start” response. If a group of x86 instructions is
executed enough times, CMS will generate a translation for them.

A CMS translation is a multiple-entry, multiple-exit region of
x86 instructions that can contain arbitrary control flow such as indi-
rect branches, divergences, and loops. As with other dynamic trans-
lation systems, exits from a CMS translation are directly linked, or
chained, to other translations[1, 4]. In CMS, chaining is lazily per-
formed the first time an exit is executed.

The CMS translator uses a staged optimization strategy in man-
aging its translations. Translations are first lightly-optimized, but
later promoted to an aggressively-optimized translation if executed
frequently enough. This staged optimization strategy enables CMS
to focus its compilation efforts on the small subset of an x86 pro-
gram’s instructions where the majority of execution time is spent.

In this paper, we focus our efforts on improving the quality
of these aggressive translations, and the remainder of this section
focuses on the design of the aggressive optimizer.

The aggressive optimizer is designed to enable compiler op-
timizations to exploit as much available opportunity as possible,
while keeping the total compilation time to a minimum. It primarily
accomplishes these goals through a careful organization of compi-
lation steps as described below:
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1. Region preparation: Decode the selected x86 region into a
three-address code intermediate representation (IR).

2. Flow analysis: Generate a topological ordering of basic blocks
in the region, compute dominators and post-dominators, and
rename operands into a static single-assignment (SSA) form.

3. Control flow manipulation: Unroll loops, if-convert short
branch-overs and control-flow divergences. Also create single-
entry multiple-exit sub-regions (hyperblocks) that are wrapped
with checkpoint commit points to provide atomicity. Incremen-
tally update the already computed flow analysis as necessary.

4. Forward dataflow pass: In a single forward pass, apply a suite
of optimizations such as constant folding and propagation, com-
mon subexpression elimination, and several peephole optimiza-
tions. Also performs a simple alias analysis to guide redundant
load elimination and later memory optimization and scheduling
passes.

5. Backward dataflow pass: In a single backward pass, perform a
liveness analysis to guide dead-code elimination and dead-store
elimination.

6. Schedule and lower: Perform loop-invariant code motion,
hoist critical operations, allocate registers, perform code lower-
ing, and schedule each hyperblock.

7. Emit: Assemble all instructions and update branch targets.

There are two key differences between this organization and that
typically employed by a static compiler. First, the CMS translator
is broken into distinct phases which constrain the types of changes
that can be made to the IR at any given point. For example, mod-
ifications to the control flow graph are only performed in Step 3,
meaning that later passes can rely on an immutable control-flow
structure. Likewise, flow analysis is performed early in Step 2 and
is properly updated by the control-flow manipulation passes so that
later phases can rely on accurate information about loop structure,
dominators, and post-dominators.

Second, dataflow optimizations that are typically implemented
as separate passes in a static compiler are instead folded into a sin-
gle forward dataflow pass and a single backward dataflow pass. For
example, the forward dataflow pass processes the region in topolog-
ical order and applies a suite of global analysis and optimizations
as it visits each statement in a basic block. In doing so, the benefits
of several (in the case of CMS, seven) forward dataflow passes can
be achieved in roughly the same amount of time as a single forward
pass.

These design differences are key to the efficiency of the trans-
lator and, thereby, the performance of CMS as a whole. In adding
additional optimizations to CMS, it is extremely important to re-
spect these efficiency considerations. In the context of a dynamic
optimizer, a powerful but computationally complex optimization is
untenable. As we show next, incorporating the atomic region ab-
straction is not only easy to do, but can be done without adding
significant overheads.

4. Atomic Regions in CMS
In this section we describe the modifications we made to CMS in
order to incorporate the atomic region abstraction. We first discuss
the hardware atomicity primitives that Efficeon provides and how
they can be used by a software compiler to implement the atomic
region abstraction. We then describe how atomic regions were
integrated into CMS. Lastly, we introduce a simple mechanism
for reining in frequent misspeculations and an optimization for
removing redundant asserts.

commit Copy working registers into shadowed registers.
Mark speculative lines in the data cache as dirty.

rollback Copy shadowed registers into working registers.
Invalidate speculative lines in the data cache.

Table 1. Efficeon atomicity primitives. Software uses these oper-
ations to control the Efficeon commit and rollback hardware

speculation:   success   failure
commit
...
p1 ← tst.ne eax, 0
brc p1, assert_1 
... 
commit

rollback
r1 ← mov 1
br recover

// monitor assert
... 
// recover x86 EIP
... 
br interpreter

...
test %eax, 0
jne cold_path 
... 

interpreted

assert_1:

recover:

original
x86 code

Figure 5. Atomic region example using the Efficeon atomicity
primitives. If speculation succeeds, the assert path will not be taken
and execution will reach the commit at the end of the region.
If speculation fails, the abort path executes a rollback before
invoking recovery code to restart execution at a non-speculative
version of the same code (e.g., via the CMS interpreter).

4.1 Hardware Atomicity
The Efficeon processor exposes its support for fast hardware check-
points through the two operations shown in Table 1. Software can
use these operations to provide the illusion of atomic execution—
the execution of a region of code completely or not at all.

The commit operation is used to denote both the beginning and
the end of an atomic execution region (atomic region). It is used at
the beginning of an atomic region to take a register checkpoint and
to treat all future register and memory updates as speculative. It
is used at the end of an atomic region to commit all speculative
updates and discard the last checkpoint. The rollback operation
is used to unconditionally abort an atomic region by restoring the
last checkpoint. A rollback does not affect the program counter, so
an instruction following the rollback can be used to redirect control
flow as necessary.

Figure 5 illustrates how the CMS translator can use these opera-
tions to speculatively optimize a region of code. The optimizer first
wraps an optimization region with commit points, and then specu-
latively removes cold paths from the region. To guarantee correct-
ness, the optimizer inserts a check, called an assert[15], to verify
that the cold path is not taken. If the assert determines that the cold
path is needed, a rollback is executed that instructs the hardware
to discard all speculative state. Control is then redirected to a non-
speculative version of the same region. In this example, execution
resumes in the CMS interpreter.

It should be noted that the Efficeon hardware is designed to
provide atomicity in a uniprocessor environment. In a multipro-
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cessor environment, additional support is necessary to provide an
illusion of atomicity to other threads. Essentially, loads must also
be handled speculatively and coherence traffic must be monitored
to detect atomicity violations. The necessary support has previously
been proposed[2, 14, 17].

4.2 Incorporating Atomic Regions into CMS
The CMS translator already uses the hardware atomicity primitives
to obviate the need for recovery code in superblocks. The CMS
optimizer wraps each superblock with commit points to simplify
the recovery of precise state in the case of a misspeculation or
exception. For example, if a speculatively hoisted load incurs a
memory fault, CMS relies on the hardware to discard all speculative
state and afterwards redirects execution to a more conservative
implementation of the same code (often by dispatching to the
interpreter).

However, the CMS translator does not use hardware atomicity
to expose speculative optimization opportunities resulting from bi-
ased control flow. As described in Section 2, the translator can be
made to better optimize code by simply generating an atomic region
with rarely executed paths removed. Extending the CMS translator
to use atomic region optimizations required three additions: repre-
senting an assert operation in the IR, a mechanism for converting
biased branches into asserts, and a mechanism for recovering from
misspeculations.

Assert operations: We implemented the assert operation in the
compiler IR as a pseudo operation. The assert is used to specula-
tively convert highly-biased conditional branches into straight-line
code. The assert consumes the same condition as a biased branch
and—like the branch it replaces—has no dataflow consumers. Un-
like a branch, no operations are control dependent on an assert,
which means that it is not an optimization obstacle for later passes.
The assert is treated as a potentially-exception-causing operation in
the IR to prevent it from being hoisted out of its atomic region, and
an assert is annotated with a numerical identifier to distinguish it
from other asserts in the same region.

Converting biased branches into asserts: An accurate exe-
cution profile is necessary to identify which conditional branches
are good candidates to convert into asserts. Misspeculations can be
very costly, so only highly-biased branches should be converted.
However, CMS does not collect a profile that is sufficient to prop-
erly distinguish good candidate branches. The execution profile
collected by the CMS interpreter simply does not include enough
samples to be useful for our purposes.

Rather than forcing the interpreter to collect more samples or
adding instrumentation code to lightly-optimized translations, both
of which could incur costly performance overheads, we instead
turned our attention to the translation chaining mechanism.

As described in Section 3.2, translation exits are lazily chained
to other translations. Therefore when a lightly-optimized transla-
tion is promoted and retranslated, rarely taken translation exits are
unlikely to have been chained. Similarly, the conditional branches
corresponding to these unchained exits are likely to be biased. We
have implemented a heuristic based on this observation that strikes
a reasonable balance between being able to identify good assert
candidates and minimizing profiling overheads.

We modified the CMS translator so that it consults chaining in-
formation when promoting a lightly-optimized translation. All un-
chained exits are considered assert candidates, and this information
is provided to a new flow manipulation pass which we added to
Step 3 of the optimizer. Figures 1(a) and 1(c) from our illustrative
example show how unchained exits are converted to asserts in the
aggressively-optimized control flow graph.

Misspeculation recovery: Throughout most of the optimizer,
the assert is represented as a single dataflow operation. In the final

code emit step this changes, and the assert is emitted as a condi-
tional branch which targets rollback code. The exact rollback rou-
tine that the assert targets depends on the numerical identifier of the
assert. Each identifier is associated with a separate rollback routine
to simplify misspeculation monitoring (described in Section 4.3).

There are a maximum of 31 chainable exits in a translation,
and the numerical identifier assigned to an assert is the same as
the exit number of the cold branch it replaces. We therefore added
31 rollback routines to CMS which are shared by all asserts. As
shown in Figure 5, a conditional branch is emitted for each assert
that targets the rollback routine with the corresponding numerical
identifier.

When an assert fires, control is directed to its rollback routine,
which first executes a rollback to discard all speculative register
and memory state. It then loads the identifier of the triggered assert
into a register and jumps to the misspeculation recovery routine.
This misspeculation recovery routine is responsible for recovering
the x86 instruction pointer and dispatching to the interpreter (to
execute the same code non-speculatively). The misspeculation re-
covery routine is also responsible for monitoring each assert, which
we describe next.

4.3 Monitoring Speculations
Even though our heuristic for identifying biased branches is reason-
ably accurate, it is still fallible. It occasionally leads CMS to con-
vert branches into asserts that fire too frequently. Often the cause
is a change in program behavior: a path that was rarely executed
early in the program becomes a common path later in the program.
If these problematic asserts are left untended, they will adversely
affect performance because of the relatively high cost associated
with misspeculation. Therefore, a mechanism is necessary to iden-
tify and disable problematic asserts[20].

We developed a simple solution by augmenting the misspecula-
tion recovery routine. The routine updates a misspeculation counter
corresponding to the assert that fired3. If this counter exceeds a
threshold, then the assert is designated misbehaving, and the trans-
lation will be reoptimized with the corresponding assert disabled.

Furthermore, it is desirable to tolerate asserts that fire infre-
quently relative to the total number of times they execute. For these
asserts, the performance improvements provided by each success-
ful execution of the assert outweighs the infrequent misspeculation
costs. To distinguish between asserts which are problematic and as-
serts that are tolerable, it is ideal to know the local assert rate, or
the number of times an assert fires relative to the number of times
it executes.

Discovering the precise execution frequency of an assert is
difficult, as it would require intrusive profiling. In the interest of
minimizing overheads, we use an alternative approach based on
hardware sampling.

By default, CMS takes a program counter sample every 200,000
cycles so that it can identify and promote frequently executing
translations. If a sample is taken while a translation is executing,
a counter in the translation metadata is incremented. We can there-
fore use this counter as an approximation for translation execution
frequency.

Our assert monitoring mechanism is shown in Algorithm 1. Es-
sentially, whenever an assert misspeculation counter is updated we
also capture the value of the translation sample counter. When the
next misspeculation occurs, the code checks whether a sample has
been received since the last time the assert fired—by comparing

3 The counter does not increase the size of the metadata associated with a
translation because an assert replaces what would have otherwise been a
translation exit. Each translation already includes eight bytes of metadata
for each translation exit and we simply reappropriate the same space to
house metadata for each assert.
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Algorithm 1 Assert misspeculation monitoring
// Monitors the behavior of a misspeculating assert.
// Returns true if the assert should be disabled.
procedure MONITORASSERT(assertID, transID)

currSample← GETTRANSSAMPLEVALUE(transID)
lastSample← GETCAPTUREDSAMPLEVALUE(assertID)
GLOBALASSERTCOUNT← GLOBALASSERTCOUNT +1
if ASSERTSAMPLEMATCHES(currSample, lastSample) then

assertCount← GETASSERTCOUNT(assertID) +1
if assertCount > ASSERTTHRESH then

return true
else

SETASSERTCOUNT(assertID, assertCount)
return false

else
SETASSERTCOUNT(assertID, 1)
SETCAPTUREDSAMPLEVALUE(assertID, currSample)
return false

// Compares two sample values. Returns true if they are equivalent
// after shifting off some of their least significant bits.
procedure ASSERTSAMPLEMATCHES(currSample, lastSample)

mismatchBits← currSample⊕ lastSample
mismatchBits← mismatchBits� ASSERTSAMPLESHIFT
return mismatchBits ≡ 0

// Global assert monitoring. If the global assert rate is too high,
// tighten the local sample shift or threshold. Otherwise, loosen them.
procedure GLOBALMONITOR

if GLOBALASSERTCOUNT > GLOBALASSERTTHRESH then
if ASSERTSAMPLESHIFT < MAXSAMPLESHIFT then

ASSERTSAMPLESHIFT← ASSERTSAMPLESHIFT +1
else if ASSERTTHRESH > 0 then

ASSERTTHRESH← ASSERTTHRESH −1
else

if ASSERTTHRESH < LOCALASSERTTHRESH then
ASSERTTHRESH← ASSERTTHRESH +1

else if ASSERTSAMPLESHIFT > 0 then
ASSERTSAMPLESHIFT← ASSERTSAMPLESHIFT −1

GLOBALASSERTCOUNT← 0

the captured sample value to the current translation sample counter
value. A changed sample counter value implies that the translation
is commonly executed, and by proxy so is the assert being moni-
tored. To reflect that misspeculations from commonly executed as-
serts should be tolerated, the misspeculation counter is reset if the
sample values do not match. Otherwise, when the assert count ex-
ceeds a threshold it is disabled through retranslation.

However, workloads with a large number of commonly exe-
cuted translations will have an increased latency to detect misbe-
having asserts. To prevent this increased detection latency from ad-
versely affecting performance, we also incorporate a mechanism to
monitor the global assert rate, or the total number of asserts firing
per cycle.

Algorithm 1 also shows our global monitoring mechanism. Ev-
ery 100 million cycles the global monitor is invoked to check if the
global assert count exceeds a global assert threshold. If the thresh-
old is exceeded, the parameters of the local assert monitoring mech-
anism are tightened: either by increasing the assert sample shift
parameter (to require sample counter values to differ in more sig-
nificant bits before considering a translation commonly executed)
or by reducing the local assert threshold.

4.4 Eliminating Redundant Asserts
After biased branches have been converted into asserts, opportu-
nities exist to remove some of these asserts from the CFG. These
opportunities arise either because an assert is redundant—another

Processor Transmeta Efficeon 2 (TM8800)
Processor frequency 1.2 GHz
Dynamic Translator CMS 7.0 (pre-release)
Registers 64 integer, 64 FP
Translation Cache 32 MB (of physical memory)
L1 Instruction Cache 128 KB, 4-way, 64B line
L1 Data Cache 64 KB, 8-way, 32B line
Victim Cache 1 KB, fully-associative, 32B line
L2 Unified Cache 1024 KB, 4-way, 128B line
Physical Memory 1 GB DDR-400
Operating System Linux 2.6.19
Compiler (for SPEC) Intel R©C++ Compiler 11.0
Compilation options -O3 -ipo -no-prec-div -prof use
Local Assert Threshold 8 per translation sample
Global Assert Threshold 16 per 100 million cycles

Table 2. Evaluation system configuration

assert in the same atomic region implements the same (or stronger)
check—or because an assert can be proven to never fire.

The existing common subexpression elimination and constant
evaluation optimizations were easily modified to recognize assert
operations. We also added an optimization that can eliminate an
assert if it is rendered unnecessary by a stronger assert. One assert
is considered stronger than another if it would fire in at least every
situation that the other would fire. For example, an assert that fires
whenever r1 < 5 is stronger than an assert which fires whenever
r1 < 4.

We also extended common subexpression elimination to allow
an assert to be removed if it is post-dominated by an equivalent
or stronger assert. Typically an operation must be dominated by
an equivalent (or stronger) operation to be removed, but atomicity
makes post-dominance a sufficient proxy for dominance.

5. Evaluation
In this section, we present the result of incorporating the atomic
region abstraction into CMS, evaluated on an Efficeon hardware
platform. We first describe the configuration of our evaluation sys-
tem and provide compilation details for the benchmarks used. We
then present and interpret our experimental results. Overall, we find
that incorporating atomic regions into CMS provides a 3% average
performance improvement and that our simple assert monitoring
mechanism is sufficient enough to prevent slowdowns in any indi-
vidual benchmark.

5.1 System Configuration
All of our experiments are run using a Transmeta development
system. Shown in Table 2, the system configuration is intended
to closely represent retail Efficeon hardware4. Of particular note
is the pre-release version of CMS that we used for our evaluation;
this CMS version includes significant enhancements over the last
retail version of CMS and is in many ways superior. In terms of
raw performance, the pre-release version is marginally faster than
the retail version on the benchmarks we used.

For our evaluation, we run all of the SPEC CPU2000 inte-
ger benchmarks to completion using the reference inputs. We
did not use SPEC CPU2006 because our evaluation system—
representative of a computer circa 2004—does not satisfy the
system requirements. The benchmarks are compiled with the
Intel R©C++ Compiler using the highest performing SPEC “base”

4 Transmeta stopped selling microprocessors in 2005.
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Figure 6. SPEC CPU2000 integer results. Results for three atomic region configurations. (d)isabled misspeculation monitoring,
(m)onitoring enabled but assert optimizations disabled, (a)tomic region optimizations and monitoring fully enabled. All results have been
normalized to the baseline CMS configuration, which has no atomic region support.

compiler options, including profile guided optimizations. All ef-
forts have been made to use the best possible baseline.

5.2 Experimental Results
In our experiments, we focus on understanding both the dynamic
and static impacts of atomic regions. We find that atomic regions
are able to improve performance over a baseline CMS by an aver-
age of 3% and by up to 9%. We show that this performance im-
provement is achievable because frequently misspeculating asserts
are identified and disabled by our simple assert monitoring mecha-
nism. Likewise, we find that the compilation overheads introduced
by atomic regions are minimal. Finally, we show that atomic re-
gions do not suffer from static code bloat problems and generally
reduce static code size.

Figure 6 shows the performance of three configurations of our
atomic region implementation in CMS, normalized to the runtime
of the baseline configuration. The first configuration shows the
performance of a system without our assert monitoring mechanism
enabled. The second configuration enables the assert monitoring
mechanism but does not use assert operations when speculating
on biased exits (i.e., biased-exit branches are simply re-targeted at
rollback and recovery code). The third configuration is a complete
implementation of atomic regions, including assert monitoring and
speculative conversion of biased exits into assert operations.

The complete atomic regions implementation provides an over-
all performance improvement in nearly every benchmark and none
of the benchmarks exhibited a slowdown. Atomic regions provides
a 3% average improvement over the CMS baseline that uses su-
perblocks. Seven of the benchmarks exhibit greater than a 2% per-
formance improvement and three of these exhibit a greater than 5%
performance improvement. The benchmark with the largest perfor-
mance improvement is vortex at 9.3%.

The performance improvements exhibited roughly correlate
with the percentage of dynamic branches which are considered
highly biased. Shown in the first column of Table 3 are the percent-
age of branches executed in each benchmark which are 99.999%
biased or greater (i.e., branches for which fewer than 1 in 100,000
dynamic instances oppose the bias). The eight benchmarks with

greater than 10% of their executed branches being biased exhibit
a performance a performance improvement of 2% or more (with
the exception of eon which improves by 1.7%). Similarly, the three
benchmarks which exhibit a 5% or greater performance improve-
ment have greater than 25% of their branches being biased.

Targeting a 99.999% bias threshold rather than a 100% bias
threshold is important to broadening the set of branches which
will be considered profitable speculation candidates. Not doing so
can have a significant impact on the performance achievable by
eliminating profitable opportunities. For example, when only 100%
biased branches are considered profitable the percentage of viable
dynamic branches in gap drops to 11.2% and the performance
improvement achieved reduces to 2.3% (from 5.9%).

Using our current implementation of atomic regions, we are un-
able to profitably speculate on branches less than 99.999% biased,
due to a high cost for misspeculation. Shown in the second column
of Table 3 is the estimated cost of an assert misspeculation in each
benchmark, which we measured using an instrumented version of
CMS. In general, recovering from an assert misspeculation takes
thousands of cycles. Therefore, it is only worthwhile to speculate
on branches that go against their bias significantly less than one out
of every thousand executions. Our selection of assert thresholds,
shown in Table 2, satisfies this goal although the thresholds have
not been highly tuned.

The high cost of an assert misspeculation can also cause severe
performance degradation in a naive implementation of atomic re-
gions. The first configuration in Figure 6 shows the performance
lost if frequently misspeculating asserts are left untended. If prob-
lematic asserts are not disabled, such a configuration will incur a
misspeculation once every thousand cycles on average. Combined
with the high cost for misspeculations this results in a greater than
factor of two slowdown for most benchmarks.

The simple assert monitoring mechanism introduced in Sec-
tion 4.3 is sufficient to identify problematic asserts so that they can
be disabled after retranslation. As shown in Table 3, this simple
mechanism is able to reduce the misspeculation rate to fewer than
one misspeculation every ten million cycles. In doing so, approxi-
mately one in five asserts are disabled through retranslation.
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Dynamic Biased Misspeculation Misspec. / 1M cyc. Misspec. / 1M cyc. Static Asserts Static Code Static Asserts
Benchmark Branches (%) Cost (cycles) (no monitoring) (w/ monitoring) Disabled (%) Reduction (%) Eliminated (%)
gzip 4.3 1790 1337 0.06 33.0 -0.1 0.9
vpr 9.8 6188 87 0.08 1.1 0.6 1.2
gcc 5.8 1816 575 0.1 4.5 0.9 1.2
mcf 8.1 1167 968 0.07 24.0 0.4 1.2
crafty 14.9 2985 1529 0.06 28.7 0.4 0.7
parser 14.3 2135 604 0.1 30.1 0.2 2.2
eon 13.0 961 1127 0.04 21.4 0.6 1.1
perlbmk 30.7 1878 942 0.08 17.9 1.9 2.1
gap 26.9 1738 1879 0.08 16.1 1.4 1.0
vortex 38.7 1863 1236 0.1 3.6 3.5 10.1
bzip2 19.0 1179 1497 0.09 34.2 0.4 0.9
twolf 13.6 2598 252 0.07 9.4 0.6 1.0
average 16.6 2195 1003 0.08 18.7 0.9 2.0

Table 3. Atomic region statistics. Lists the percentage of dynamic branches that are 99.999% biased or greater, the estimated misspeculation
cost, misspeculation rates (with and without assert monitoring), the percentage of static asserts disabled because they are misbehaving, the
static reduction in translation code size enabled by atomic regions, and the percentage of static asserts that have been redundancy eliminated.

However, the additional retranslation costs are minor. The sec-
ond configuration in Figure 6 measures the performance costs as-
sociated with atomic regions by enabling assert monitoring and re-
translation but disabling all the optimization benefits of assert op-
erations. The performance costs never exceed 1.5% and generally
amount to less than 1% of overhead. Overall, we find that our sim-
ple assert monitoring mechanism is sufficient and perhaps conser-
vative.

We also analyze the impact of atomic regions on static code
characteristics. Whereas superblocks can incur significant code
bloat due to transformations such as tail duplication, atomic regions
do not. As Table 3 shows, static translation size generally decreases
by a small amount. The reduction in static code is mostly the result
of extra classical optimization opportunities exposed by atomic
regions. The redundant assert elimination optimizations described
in Section 4.4 are also beneficial as they are able to eliminate 2%
of asserts on average (up to 10% in vortex).

Our experimental results demonstrate that atomic regions are
able to offer significant performance improvements on a real ma-
chine and that these performance improvements can be achieved
without detrimental side-effects. In addition, it has also served
as a motivation for future work. As already mentioned, the high
misspeculation cost prevents our implementation from considering
branches which are less than 99.999% biased. However, if the mis-
speculation cost could be reduced significantly, it should be possi-
ble to target a lower bias threshold and thereby broaden the set of
branches that are profitable to convert into asserts.

To reduce the misspeculation cost, we plan to implement a
misspeculation recovery mechanism that redirects execution to a
non-speculative translation rather than the CMS interpreter. Doing
so will incur some code duplication, but so long as the duplication
is incurred judiciously it could make for a worthwhile trade-off.

6. Related Work
Several other compiler abstractions have previously been proposed,
of which three have achieved widespread adoption. Trace schedul-
ing was the first to introduce the notion of an optimization unit
that crosses basic block boundaries and can easily incorporate pro-
file information[6]. In practice, optimizing across side-entrances
in a trace introduces bookkeeping complexities that prove diffi-
cult to manage. The superblock solved this problem by introducing
a single-entry multiple-exit compilation unit, free of reconvergent
control flow[9]. The hyperblock furthers the superblock by includ-
ing small control flow “hammocks” by predicating them[13].

Regardless of the compilation abstraction chosen, speculative
compiler optimizations must guarantee correct program execution
of speculatively optimized code. Guaranteeing that speculatively
executed operations will not adversely affect correctness by com-
puting incorrect values or triggering spurious exceptions requires
sophisticated analysis and severely limits optimization opportuni-
ties. Therefore, a range of hardware proposals have been proposed
to aid the compiler.

Instruction boosting[19] supports speculatively hoisting opera-
tions above branches by enabling the compiler to communicate its
decisions to the hardware. The result of a speculatively hoisted op-
eration is labeled with the future branch outcomes upon which it
is control-dependent. The hardware uses this information—in con-
junction with shadowed register files and store buffers—to only
commit the result or any raised exception once the operation be-
comes non-speculative.

Sentinel scheduling[12] and write-back suppression[3] provide
hardware support to simplify exception handling for speculatively
hoisted instructions. In sentinel scheduling, instructions which may
speculatively cause an exception are annotated and are paired with
another instruction that non-speculatively checks for exceptions.
With write-back suppression, all speculatively executed instruc-
tions are annotated so that if one raises an exception all speculative
updates can be suppressed.

All three of these schemes specifically focus on handling spec-
ulative results and speculative exceptions and simply ignore other
operations. As a result misspeculation recovery remains a complex
and non-trivial problem because recovery code must be generated
for a multitude of possible executions. Both CMS and atomic re-
gions differ because they utilize hardware atomicity rather than ex-
plicitly annotated speculative instructions. Hardware atomicity en-
ables simple recovery because if a misspeculation occurs hardware
rolls back all state to a well-defined point. Execution is then simply
redirected to a non-speculative implementation of the same code
region.

The rePLay framework[15] converts biased control-flow into
hardware assert operations which enable the removal of side-exits
from an optimization region. A hardware-only system, rePLay re-
lies on a modified branch predictor to identify predictable instruc-
tion traces and place them into atomically executed blocks, called
frames, which are processed by a hardware code optimizer. These
optimized frames are then stored in a frame cache, and execution is
redirected to them by a frame predictor. If an assert detects a mis-
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speculation, the frame is rolled back, and execution resumes using
normal instructions.

In comparison, atomic regions require only a fraction of the
hardware needed by rePLay. The tasks of identifying speculative
opportunities and generating optimized code for them is all handled
by a software optimization system. Likewise, the handling of opti-
mized code is left to software and the code itself is stored in con-
ventional physical memory. Furthermore, an atomic region, which
can contain arbitrary control flow, is more general than a frame,
which can only have a single-exit. This enables atomic regions to
be used in larger optimization scopes and, thereby, expose more
speculative opportunities.

The hardware required for atomic regions is nearly identi-
cal to hardware proposed in other contexts. Atomic execution
hardware forms the substrate for techniques such as speculative
lock elision[16], removing penalties of strongly-ordered memory
models[2], and transactional memory[11] and shares many similar-
ities to memory system support for speculative multithreading[8].

7. Conclusions
In this paper, we have demonstrated that our previously proposed
atomic region abstraction truly is simple and intuitive to inte-
grate into a mature compilation system. We have also shown that
atomic regions expose real performance opportunities even in a
well-engineered commercial system.

Our experience in this work has also led us to form several opin-
ions on the relative merit and utility of atomic regions, especially
in comparison to superblocks. Our previous view of atomic regions
and superblocks as purely competitive abstractions was overly sim-
plistic. Instead, in our experience atomic regions and superblocks
are complementary and synergistic with one another.

Specifically, the key advantage of the atomic region abstraction
lies in exposing opportunities to remove operations that are par-
tially redundant or partially dead along hot paths (i.e., operations
that are fully redundant or fully dead once cold paths are removed).
The strength of the approach is the relative simplicity in which
it can expose these opportunities. Although superblocks could be
used to expose such optimization opportunities, doing so requires
a significantly larger effort. Despite being a mature and highly-
engineered implementation, CMS does not exploit superblocks for
partial redundancy or partial dead code elimination.

These observations have led us to believe that the real benefits of
the superblock abstraction are scheduling optimizations that reduce
critical path height and increase instruction-level parallelism. On a
wide in-order superscalar such as Efficeon, generating good static
schedules is key to performance and therefore the superblock plays
a critical role on these types of machines.

Looking forward, physical constraints portend a re-emergence
of simple, in-order processor designs. To provide good single-
thread performance, these designs necessitate sophisticated com-
piler infrastructures, and we believe that hardware support for spec-
ulative optimizations is an energy and complexity effective ap-
proach to achieving that performance. Specifically, we believe sup-
port for the atomic region, along with the superblock, is a strong
candidate for incorporation into these future designs.
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