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Abstract

We describe novel techniques used for efficient sim-
ulation of memory in SIMICS, an instruction level
simulator developed at SICS. The design has focused
on efficiently supporting the simulation of multiproces-
sors, analyzing complex memory hierarchies and run-
ning large binaries with a mizture of system-level and
user-level code.

A software caching mechanism (the Simulator
Translation Cache, STC) improves the performance of
interpreted memory operations by reducing the number
of calls to complex memory simulation code. Major
data structures are allocated lazily to reduce the size
of the simulator process. A well-defined internal in-
terface to generic memory simulation simplifies user
ertensions. Leveraging on a flexible interpreter based
on threaded code allows runtime selection of statis-
tics gathering, memory profiling, and cache stmulation
with low overhead.

The result is a« memory simulation scheme that sup-
ports a range of features for use in computer architec-
ture research, program profiling, and debugging.

Keywords: interpreter, simulator, multiprocessor,
SiMICS, memory simulation, memory
hierarchy, cache simulation

1 Introduction

A computer program can execute in several envi-
ronments. Generally, the program was written with a
particular compiler, operating system, and hardware
in mind. This target environment will then typically
be the most efficient environment for that program.
Most of computer science revolves around improving
existing target environments or components thereof.

Most target environments divide the execution of
a program into two distinct phases. The first, com-
pilation, generates an object binary. In the second
phase, the resulting binary is executed directly on an
operating system and hardware platform, but is not
transformed any further. The intention of this divi-
sion of labor is to perform the cumbersome task of
determining the intention of the program only once,
thus allowing the more frequent operation of direct
execution to be as efficient as possible. Let us call the
platform of the second phase the execution environ-
ment.

It is common to insert a layer between the binary
and the execution environment. Most of these layers
involve some form of transformation of the program,

which may or may not be visible to the user. Com-
mon reasons for doing this are to profile the binary
to determine where to make improvements in the pro-
gram [18], mimicking older execution environments to
protect software investments [2, 3, 27, 36], control-
ling the execution in order to debug the program [39],
transforming the program to improve run-time perfor-
mance [21, 28], and looking for common source code
bugs by monitoring the execution [20].

1.1 Execution Analysis

A recurring theme in computer science is the need
to understand what real programs do. For example,
new computer architectures are developed to allow
high-performance implementations. There is a trove of
statistics available to guide computer architects when
they are deciding what to optimize. Sets of programs
such as the SPECint92 [40] and Splash [35] bench-
marks are common points of reference in the academic
community, and many believe them to be representa-
tive of user workloads.

A representative program needs to be analyzed to
understand what optimizations in an underlying ar-
chitecture are globally applicable. On the other hand,
if a program is non-representative, this needs to be de-
termined, and furthermore decided whether to modify
the program or specialize the hardware.

Another important example is studying the interac-
tion between application, system software, and com-
puter architecture. A growing body of research indi-
cates that the large, complex systems in common use
today are poorly understood [12; 19].

In both examples, we are often concerned with the
execution of a binary. The reason is simple: in both
cases we are interested in studying real programs, and
the task becomes too large if we must write realistic
applications or implement new compilers. Therefore,
the starting point is a “real” user binary whose compi-
lation may or may not have been modified by making
small changes to the source code, libraries, compiler,
or the binary itself.

This execution analysis has traditionally been done
by running the program on top of a simulator.

1.2 Simulator Issues

Traditional use of simulation as an instrument have
often suffered from the consequences of poor simula-
tor design. If the simulator is slow or has a large
memory overhead, only small programs (“toy bench-
marks”) can be studied. If the simulator fails to sim-
ulate system-level effects; the resulting statistics will



be non-representative of real workloads. Among the
more important system-level effects are those caused
by page faults, interrupt-driven I/O, cache interfer-
ence, and multiprogramming. The common reason
for their omission is that they are difficult to support,
especially in fast simulation techniques such as varia-
tions of direct execution.

We believe that once these design difficulties are
dealt with, the resulting simulator will be both effi-
cient and multi-purpose:

e computer architecture investigations;, a common
domain for simulators, the purpose here is to un-
derstand the frequency and character of hardware
events triggered by software,

e program profiling; traditional techniques of de-
tailed program behavior analysis are too invasive
or inflexible for complex systems, such as real-
time operating system kernels with extensive in-
teraction among server components,

e debugging; simulators allow the debugging of pro-
grams that are otherwise difficult to deal with,
such as system-level code; furthermore, the con-
trol over execution that a simulator can offer al-
lows for new approaches to program debugging.

1.3 The Importance of Memory

Running system-level programs requires MMU sim-
ulation, and if the simulation of data caches is added
then the simulation is required to perform several
functions for every memory operation. For many ap-
plications of simulators, this simulation of memory is
a significant if not dominant portion of the workload.
Furthermore, studying different memory hierarchies
requires end-users to add or modify code which is in-
serted onto the critical path of the simulation.

Previously, implementation of memory simulation
algorithms has been done as one of many tasks in the
process of developing a simulator. The contribution
of this paper is the development of several techniques
that together are both more flexible and more effi-
cient than previously published algorithms. Further-
more, they are applicable to almost any simulation or
analysis tool where simulation of memory operations
is involved.

1.4 Objectives of SIMICS

SiMICS is an instruction-level simulator developed
at SICS. SIMICS has several objectives, in particular,
SimICS should:

e be fust and memory efficient to allow for large
programs, large working sets, and long execution
runs,

e support complex memory hierarchies with mini-
mal loss of performance,!

1A memory hierarchy is a hierarchy of caches, possibly us-
ing different coherency schemes. In evaluating multiprocessor
memory systems, it is often of interest to look at the frequency
of different coherency protocol transactions.

e simulate multiple processors, including inter-
processor interrupts, message passing, and exter-
nal TLB invalidations,

e run system-level code to allow studies of the in-
teraction of operating system, user program, and
architecture,

e not restrict programs to any particular program-
ming language, compiler, or library,

e gather statistics, such as memory usage, fre-
quency of important events, and instruction pro-
filing. In addition, users should be able to develop
their own eztensions with minimal understanding
of the core of the simulator,

e be able to run interactively and support debugging
primitives to allow symbolic debuggers as front-
ends,

e be deterministic to allow repeats of both statistics
gathering and debugging,

e have a low startup cost and thus a short “edit-
compile-simulate” cycle,

e be as host-independent as possible.

All of the above goals set constraints on the sim-
ulation of memory. To meet them, SIMICS contains
a combination of techniques. This has allowed us to
write a single simulator that:

e supports multiple address spaces,

e simulates caches, including linking with a mem-
ory hierarchy simulator written by a user,

e deals correctly with supervisor and multiple user
address spaces, handling page faults etc,

e is fast and has low memory overhead.

Thanks greatly to the modularized design, all of
the features in the following list can be selected while
SIMICS is running. The section number where the fea-
ture is discussed in more detail is indicate in paren-
thesis.

number of processors and number of nodes (2)
choice of memory hierarchy (5.2)
Unix emulation (6)

shared physical address space among nodes, or
distributed with separate physical memories for

each node (3.5)

choice of memory management unit (MMU) (3.4)

e profiling memory usage (5.3)

e simulating caches, including varying cache size
and number of sets (5.1)

Thus, SIMICS can simulate a four-processor archi-
tecture with a shared memory bus and 64 kB direct-
mapped first level cache, or a 16-processor distributed
memory architecture with message passing devices
mapped into supervisor address space and 8 kB two-
way associative cache, without recompiling. The per-
formance impact of this flexibility is small compared
to a specialized design.



2 Internal Structure of SIMICS

In this section we give a brief description of the
overall structure of SIMICS. Figure 1 shows the prin-
cipal objects of the simulator. The machine model
is that of one or more nodes, each with one or more
processors. Devices are unique to a node, and are
memory-mapped. Generic data structures exist for
nodes, processors, and devices. The processor and
node objects are on linked lists. All nodes of the ma-
chine are on a single list, while the processors are on
multiple lists: node list (processors on a node), ma-
chine list (all processors), and a circular scheduling list
for round-robin scheduling to simulate concurrency.
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Figure 1: Principal SIMICS data structures

The program code for SIMICS is structured with
separate file pairs (C file and header file) to delineate
responsibility. We have strived for a strictly modu-
lar design. All data relating to common objects are
isolated in a single structure, and generally only func-
tions in a particular file pair can manipulate it:

e machine.[ch] describes general architecture de-
pendencies, such as where the layout of target
physical memory, the generic device table (see be-
low), minimum and maximum number of proces-
sors and nodes.

e node.[ch] data structures and functions for nodes.
A node contains one or more processors, physical
memory, and a set of memory-mapped devices.

e processor.[ch] contains information that is com-
mon to any processor type, including data struc-
tures to support threaded code.

e local-processor.[ch] describes non-generic proces-
sor attributes, such as number of registers, func-
tions for manipulating generic processor state

such as interrupt enable/disable, and functions
for accessing MMU.

e various device files, e.g. SCSI.[ch], SCC.[ch], etc.
Each device type needs to define initialization
routines. Thus, when a node is created (at run-
time), the generic device table is copied and the
listed initializers called. Generic device functions
and data structures are kept in device.[ch].

e memory.[ch] implements generic memory simula-
tion code.

e memory-hier.[ch] implements specific memory
simulation code, i.e. a particular memory hier-
archy.

e unix.[ch] support code for emulating a Unix (So-
laris 2.x) host for running user binaries.

All objects are allocated dynamically. The
user can interactively set number of processors and
nodes, and re-initialize. Global functions such
as for_all processors(), for_all memory pages(),
and for_all nodes() exist to simplify flexible design.

The only limitation on the number of processors,
nodes, size of application binary, or size of simulated
memory is the available virtual address space that the
host can comfortably support.

3 Memory Simulation in SIMICS

To support system-level simulation, SIMICS needs
to faithfully simulate logical address spaces. Table 1
lists the operations that may be required for every
memory access (including instruction fetches). Since
memory accesses are common, the operations need to
be dealt with efficiently.

. calculate the logical address,
. translate from a logical address to a physical,
. check for TLB misses,

. simulate hardware table walks,

. check for alignment violation,

1
2
3
4
5. check protection,
6
7. perform the read/write operation, and
8

. update processor state.

Table 1: Memory transaction tasks

The logical address is determined by the seman-
tics of the particular instruction. Steps 2 through 4
then translates this to a physical address and locates
the access rights. Simulating correct TLB contents
are required to correctly interleave user and system
code—TLB misses or protection violation generates
page faults that cause a page fault handler to execute.
On some processors TLB misses will result in an (at-
tempted) hardware table walk, and we want to catch
these memory references.

Misalignment refers to the inability of some pro-
cessors to access data block boundaries. In the sim-
ple case, the address is rounded of. For example, the
88110 can be programmed to do this [29]). In the



more complex case, the processor generates a trap if
the access is misaligned. For example, the Alpha ar-
chitecture relies on such traps to divide responsibility
for non-word accesses between the compiler and the
operating system [37]. SIMICS needs to support this
latter case since the Sparc always traps on misaligned
accesses [38]. This case is more “complex” in the sense
that for a sstmulator such checks are expensive.

In addition to the list in table 1, we want to
implement watchpoints?, profile memory usage (sec-
tion 5.3), and simulate a memory hierarchy (sec-
tion 5.1). The memory simulation in SIMICS should
therefore be flexible.

We now need to address the issue of how accurately
the memory hierarchy should be simulated. There are
at least four levels of increasing accuracy, see table 2.

memory contents of program (user-level)
address trace (system-level)

cache contents (off-chip memory accesses)
memory timing (exact performance)

B~ W N —

Table 2: Memory simulation accuracy levels

The first level simply maintains a correct memory
content from the perspective of the user-level program.
The second level also simulates contents of TLBs, thus
allowing table walks, page faults and operating sys-
tem code to be interleaved with the program execu-
tion. The third level simulates first (and second) level
cache contents, thus correctly modeling the address
trace coming off the chip. This level allows us to sim-
ulate coherency actions in a shared-memory multipro-
cessor, which may be performed in hardware or with
a combination of hardware and software. The fourth
and final level simulates correct latency times for per-
forming memory transactions.

SiMICS supports the first three levels. The fourth
level is currently not supported.

3.1 Memory Simulation Modules

We will use three terms for different memory spaces.
A logical address is an address used by a program,
sometimes called a virtual address. On the target ar-
chitecture, this address would be translated by the
memory management unit to the physical address,
which in turn would be used to actually look up the
data. In a simulator, there is a third level, since the
simulator itself exists in a virtual-physical environ-
ment. The physical address needs to be translated
to an address in the simulator’s virtual address space,
and this address we call the real address.

Figure 2 shows the principal components of mem-
ory simulation in SIMICS. The interpreter executes the
individual instructions. If the instruction is a memory
operation, the interpreter attempts a translation using
the simulator translation cache, STC (1). If success-
ful, the STC will return the corresponding real address

2 A watchpoint is a breakpoint on an address containing data.
Execution stops on the instruction that reads or writes an ad-
dress that the user has set a watch-point on.
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Figure 2: SIMICS modules for simulating memory

(2). If STC fails, the interpreter delegates to the mem-
ory simulator (3). This module will first do a correct
logical to physical translation via the full state of the
MMU (4). If the MMU module doesn’t want to see
a future access to this page, it calls the STC module
with the appropriate routine (5).3 If the MM U detects
a page fault, it will change the processor state to reflect
this (not shown). Next, the physical memory module
will translate the physical address to a real address
(6), allocating new space if necessary. The memory
module now performs the memory operation (7), and
execution in the interpreter resumes. The next time
this page is accessed the STC will succeed in step (1).
Note how in figure 2, the frequency of operations
increases towards the right. Only every fourth or fifth
instruction performs the STC lookup (1), and only
misses in the STC cause the MMU to be called (4).

3.2 Memory Transactions

To simplify communication between the memory
simulation modules, we have defined a generic memory
transaction data type:

typedef struct memory_transaction {

uint32 physical_address;
uint32 logical_address;
uint32 real_address;

processor_t * processor_ptr;
read_or_write_t read_or_write;
processor_mode_t mode;

data_or_instr_t data_or_instr;

unsigned snoop_bit:1;
unsigned cache_bit:1;
unsigned writethrough_bit:1;

} memory_transaction_t;

Any transaction that misses the STC causes a mem-
ory transaction object to be allocated by the mem-
ory module (in step 3 above). Only a single pointer
is then passed between the modules until the opera-
tion is resolved. Not all information is valid at any
given time—functions read and write to the structure
as they see fit. For example, the MMU is expected
to fill in the snoop, cache, and write-through bits so
that any cache simulation code can determine whether
cache is enabled for this particular memory operation.
(This is discussed further in section 3.7.) This has

3The STC code will call the physical memory module to
obtain the real address, but this is not shown.
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Figure 3: Simulator Translation Cache (STC)

to be programmed carefully, since there is no simple
way to assert that data in the structure is valid. The
advantage is design simplicity and efficiency.*

3.3 Intermediate Code Support

The core of SIMICS is based on threaded code tech-
niques [8]. We translate target object code to an in-
ternal format. This intermediate format is then in-
terpreted. This translation need not be 1:1, and we
use this to allow the memory simulation features de-
scribed in this paper to be chosen interactively. With
regards to memory simulation, there are separate sets
of intermediate codes to support four combinations:
functional, minimal statistics, memory profiling, and
cache simulation.

The functional mode is optimized for speed, thus
simulating only the functional correctness of the
execution—this includes correct MMU simulation.
The minimal statistics mode counts memory accesses
according to user or supervisor space, and whether the
access is a read or write. Memory profiling and cache
simulation are described in more detail further on.

This structure allows a single simulator binary to
support all of the features described in this paper.
Furthermore, the individual features can be toggled
during execution—the necessary internal data struc-
tures are allocated as necessary, while the execution
state is unaffected.’

Details on the internals of SIMICS are described
elsewhere [23, 24, 25, 26, 34].

3.4 Memory Management Unit

The MMU module is well isolated from the other
memory simulation components. The MMU needs to
provide a mmu_logical _to_physical() routine to re-
port on legal translations. Conversely, the MMU simu-
lation code can call a routine to clear address intervals
that are cached by the STC. This design allows new
MMU designs to be implemented with only a cursory

4Procedure calls generally become faster since we reduce pa-
rameter copying.

5If this is done for cache simulation, the caches will be cold-
started and will not yield correct statistics until they have been
warmed up. Also, deallocation is not guaranteed so multiple
mode switches will leak virtual memory.

understanding of the rest of the simulator. The MMU
simulation code need not be excessively efficient.
SIMICS currently simulates the m88110 MMU and
a pseudo-MMU for direct execution of user binaries.
The m88110 MMU is programmed using control reg-
isters, which are special instructions on the 88k.

3.5 Physical Memory

The physical memory is simulated using a sepa-
rate module that allocates space on a page-size basis
upon the first memory access to that page. It sup-
ports sparse memory usage anywhere in the physical
address space.® A single pointer associates a node
with the (hierarchical) memory data structure—see
figure 1. Multiple processors on a single node always
share the same physical address space. When simu-
lating a shared memory address space, the same data
structures are used by all nodes. When simulating a
distributed memory architecture, the memory is allo-
cated separately. Thus, the decision by the user to
simulate a shared memory or a distributed memory
architecture can be decided interactively.

Physical address space on a real machine is seldom
a continuous 4 GB. Therefore, the machine description
file can define a macro FIX_ADDRESS() that is applied
to all physical addresses.

3.6 Simulator Translation Cache (STC)

The STC caches legitimate address translations for
quick access. Thus it contains a subset of the TLB
entries. The STC translates directly from logical ad-
dress to real address. Whenever there is a miss in the
STC, it calls the mmu_logical to_physical() routine
described earlier. The MMU simulation code can, in
turn, call the mem_add_to _STC() routine to tell the
STC module to enable a particular translation. The
intent is that any future accesses to this logical page
should hit the STC. The STC code is complex and
intimately tied to the simulator core, but this is hid-
den from the MMU simulation code. STC entries can
likewise be invalidated by the MMU module.

For each processor, there are six separate STCs for
each combination of read, write, or execute with su-
pervisor or user.

8SIMICS supports at most 32-bit physical address spaces.



The principal STC data structure and translation
scheme is illustrated in figure 3. The input is a logical
address provided by the instruction interpreter. The
bottom bits of the page number (bits 12-20) is the
index into a hash table. The tag is formed by the
whole page number, in this case the top 20 bits. The
bottom 12 bits of the tag are zero. For a 2° byte
memory object, the bottom (s+1) bits of the address
are not cleared. A tag mismatch indicates either a
translation miss or a misaligned address. Finally, the
value stored in the hash table is the difference between
the real and logical address. The real address can be
formed by adding the logical address to this value.”

Note the rather large 512-entry hash table. Since
the simulated TLB is generally fully associative or has
a high associativity, we need a large direct-mapped
STC to give comparable performance. We do not need
to handle misses, so there is no alternate linked-list
structure. This design handles items 2-7 in table 1.

The two pointers, rSTC_WRITE and rSTC_READ,
point to the current STC table for memory accesses.
They change value whenever the processor switches
between user and supervisor mode, or when multi-
processor time slicing occurs (see section 7). Having
separate tables for read and write operations allows us
to support a range of features in MMU and/or cache
designs, such as valid bit, dirty bit, and write protec-
tion. In SIMICS, the two tables lie adjacent in memory
(read table first) and its location is cached in a register
during interpreter execution.

In the source code of the interpreter, the fol-
lowing C macro is used to perform memory op-
erations: MEMORY_OPERATION(DST, SRC, TYPECAST,
MEM_OP_TYPE, SIZE). DST evaluates to an Lvalue to
store the result in the case of loads, and the value to
be written in the case of stores. SRC evaluates to the
effective address. TYPECAST is the type conversion to
be applied (signed byte, for instance). MEM_OP_TYPE
identifies the type of operation: load, store, swap, etc.
SIZE is the number of bytes of the operation.

The same macro is used by all memory instructions
in both the Sparc and m88110 simulation code, and
should be directly usable to simulate any similar RISC
instruction set.

3.7 Simulating a Data Cache

We want to simulate the cache contents to gather
performance statistics, and to support the simulation
of memory hierarchies. Naturally, as soon as caches
are simulated they need to be involved in every mem-
ory operation. More specifically, it adds a step be-
tween 6 and 6 in table 1.

Fortunately, cache line look-up and TLB look-up
are often done in parallel on real hardware. The re-
sult is that the lower bits (those typically used for
cache look-up) remain the same after the logical ad-
dress has been translated to a physical one. We can

"This works due to the following observation: let P, be the
starting address of the simulated logical page containing the log-
ical address @; to be translated. Let P be the starting address
in the host address space (real address) of the corresponding
page. Then (P, — P) + Q; = Qr, where Q; is the real address
of Q;. We store (P — P;) in the hash table. The concept is

similar to that of the virtual origin of an array [17].

therefore extend the STC to support cache lines, thus
performing a cache and TLB look-up in one operation.

‘ Interpreter ‘—1>‘ STC ‘477 memory
3 hierarchy

6

ZJ \ /v

) ‘

location / 5 T memory
in memory management
physical mem unit

< <

increasing performance criticality

Figure 4: SIMICS modules for cache simulation

Figure 4 illustrates memory simulation when cache
simulation is enabled. The algorithm is analogous to
figure 2, except that the memory module does not up-
date the STC directly. Instead, a failed STC look-up
is ultimately passed on to the memory hierarchy mod-
ule (6). The memory hierarchy module simulates the
cache in whatever manner it sees fit, gathers statistics,
etc. It is up to the memory hierarchy module to up-
date the STC (7). We return to the memory hierarchy
in the next section.

The enhanced STC scheme for cache simulation is
very similar to figure 3. We do the look-up as if the
cache was a direct-mapped, 4 kB cache with 16-byte
cache lines.® The hash table is 256 entries, rather than
512, and the the hash index is formed by bits 4-11 of
the logical address, rather than bits 12-20.

We need to check the logical address and the align-
ment, as in the previous section. This does not restrict
the memory hierarchy to a particular first-level cache
size or organization, since cache lines are only added
to the STC if told to by the memory hierarchy code.’
Note also that cache lines should only be placed in this
STC if accesses to them do not affect any cache sim-
ulation state. For example, if the replacement scheme
of the simulated cache is LRU, then only MRU lines
can be put in the STC.1% If the replacement is random,
then any line can be in the STC.

SiMICS will not track STC hits other than to count
them in broad categories: supervisor read hits, super-
visor write hits, user read hits, user write hits.

Note that the this design could support either sim-
ulating full cache contents or just the cache logic (i.e.
tags, state bits, and memory references generated by
misses). The implementation in SIMICS only supports
the latter.

3.8 STC Efficiency

To illustrate the efficiency of the STC design, con-
sider the following Sparc assembler. This is the code
that an optimizing C compiler should generate for an
STC look-up for a load-word instruction (Sparc as-
sembler):

8We have experimented with different sizes, but the perfor-
mance improvement is not dramatic for larger STCs.
9Cache line size must be a multiple of the STC line size.

0L RU = Least Recently Used, MRU = Most Recently Used.



srl Y%rLA, 9, %rA

and Oxff8, Y%rA, %rh

ldd [ %rA + %rSTC_READ 1, Y%rA
andn Y%rLA, Oxffc, %rT

cmp  %rA, %rT

bne _do_full_lookup

The logical address is presumed to be in register
rEA. We first extract the index into the STC (this
takes two instructions because the Sparc does not have
a bit-extract instruction). Next we load the double-
word STC entry into the register pair (rdA, rB). We
now extract bits 0-1 and 12-31 from the logical address
(vefer to figure 3) and compare with the STC tag. If
they are equal, then we are finished and the resulting
real address is in [rEA + rB]. (The Sparc supports
register+register addressing so the required load can
be done in one instruction.)

Thus, six instructions calculate the hash index,
fetch the hash table entry, check the tag value, check
for misalignment, and return the real address. The
memory overhead is approx. 24 kB per processor.

The above code describes an STC look-up with-
out data cache. For the cache simulation described
in the previous section, the shift distance in the first
instruction and the bits extracted in the 2nd and 4th
instruction would be different.

The small amount of code required makes the STC
approach suitable for inclusion in run-time generated
code, such as is becoming increasingly popular in sim-
ulator designs [14, 43, 33]. SIMICS has been designed

with this future extension in mind [25].

4 Code Memory

SiMICS obviously needs to deal with instruction
memory as well. It supports separate MMUs for in-
structions and data, such as used by the 88110. TLB
look-ups for instruction accesses are less crucial, how-
ever, since they can largely be done implicitly. We
use the technique used in g88—decoded instructions
lie consecutively in blocks of logical pages [5]. This
means that instruction TLB look-up is only required
when branching between pages, which in our measure-
ments are several orders of magnitude less common
then branches on pages.

Furthermore, when instructions are decoded we
distinguish between on-page branches and off-page
branches (whenever we can do so statically). On-page
branches require no TLB look-up, and thus execute
faster.

Currently, SIMICS does not simulate instruction
caches.

5 Memory Hierarchies

A particular memory hierarchy module is used
to implement whatever functionality an investigator
needs in order to analyze a program’s behavior with
respect to memory operations. We have defined an
internal interface for writing problem-specific memory
hierarchies well isolated from the internals of SIMICS.
In this section, we describe this interface.

The user code needs to implement four routines,
listed in table 3. user mem possible_cachemiss()
is the most important routine. It is called whenever

e user mem_possible _cachemiss()
e user mem _flush cache()
e user mem_alloc_pp()

e user mem_alloc_cpu()

Table 3: Memory hierarchy interface

the STC misses. It is passed a memory transaction
which already contains all relevant information, in-
cluding logical, physical, and real addresses, and in-
formation from the MMU including cache valid bit.!?
It is up to the memory hierarchy module to update
cache state and keep track of relevant statistics. In or-
der to reduce the number of unnecessary calls to this
routine, the memory hierarchy module can filter out
cache line accesses by calling mem_add_to_STC(). This
will cause the STC to try to handle future accesses to
the specified cache line directly. STC contents can be
invalidated by calling mem £lush _STC().

user mem_flush cache() is called to tell the mem-
ory hierarchy that a particular processor has asked to
flush its cache (or portions thereof).

One of the difficulties with memory hierarchy sim-
ulation is the allocation of suitable data structures
for different machine configurations. Therefore, we
have written much of this code into the simulator
core and i1t does not have to be re-implemented with
every new memory hierarchy. Whenever a physical
memory page or processor is allocated, the user mem-
ory hierarchy code is called to obtain a pointer to
a suitable data structure. user mem_alloc_pp() and
user mem_alloc_cpu() are used to dynamically allo-
cate a suitable amount of data during simulation. The
memory hierarchy simulator has to decide what struc-
tures are related to the number of processors, and
what structures are related to the amount of mem-
ory that is being used. This is exemplified in the next
section.

5.1 Memory Hierarchy Example

In this section we describe an example implemen-
tation of a memory hierarchy which we are using to
evaluate the cache performance of a real-time kernel.
The module simulates a first level cache attached to a
common memory bus. The first-level cache is direct-
mapped, with the number of sets and associativity
selectable at run time. The common memory bus
uses a simple Illinois protocol to deal with cache co-
herency [31].

Since the STC has dealt with most of the perfor-
mance issue, our focus here is to keep a low memory
overhead and a flexible design. Specifically, we wanted
the memory overhead to be order (M + P), where
M is the amount of physical memory being used by

the application (working set) and P is the number of

processors. 12

1 The cache valid bit indicates whether the particular page
should be cached or not.
12This precludes simple gathering of several classes of statis-



(see figure 1)
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The current contents of the caches are represented
in an array of cache line info data structures:

typedef struct cache_line_info {
uint32 physical_address;
processor_t * my_cpu;
cache_state_t state;
struct cache_line_info * next;

} cache_line_info_t;

This array is labeled “1” in figures 1 and 5. When-
ever there is a possible cache miss on a processor, this
array is searched and updated as required. Also, for
every physical page of memory we allocate an array
of pointers. This array is labeled “2” in figures 1
and 5. Thus, user mem_alloc_cpu() returns an ini-
tialized array of cache line_info_t structures, and
user mem_alloc_pp() returns a zeroed array of point-
ers (see previous section). In this manner, when the
number of processors changes, such as when the user
redefines the architecture, or the number of physical
pages grows, as when the working set of the program
grows, we incrementally allocate just enough space to
keep track of cache state. Also, this run-time behavior
allows cache parameters to be set at run-time.

The reason we need to allocate an array of pointers
for every physical page is to locate the presence of data
in other caches. For example, let us assume that a par-
ticular line of data beginning at address 0x4050¢3{0 is
cached in three processors in a 16-processor machine.
See figure 5. If another processor gets a cache miss on
this line, it can look up the associated pointer in the
“cache (page)” table (2). If it is zero, then no other
processor caches the data. If it is set, then it will be
the header of a linked list of cache lines, one for each
processor that has cached the data. The cache pro-
tocol can then proceed to do the right thing. If, for
example, the processor is attempting a write, then the
Illinois protocol proceeds to invalidate the entries in
the rest of the list, update statistics, and direct the
pointer for this line to its own cache array. Similarly,
upon a cache miss, the cache contents can be searched
in the “cache (cpu)” table (1). The head of any linked

tics in the current implementation, in particular those that de-
pend on knowing the history of a cache line.

list that is encountered can be obtained via the phys-
ical address.

Note that the cache 1ine_info_t entries in figure 5
are not at identical offsets within each table. This
allows us to simulate multi-set cache designs and even
associative caches. For the same reason, each entry
needs a pointer to its processor in order to update per-
cache statistics since these are kept in the processor
structure.

The code is less than 500 lines of C (including com-
ments and declarations). It will adapt dynamically to
any machine configuration, maintain correct state of
cache lines, and gather basic execution statistics.

The memory overhead of this design is (16« P+ C+
4M)/L where P is the number of processor, C' is the
size of each processors’ data cache, M is the size of
physical memory (working set), and L is the size of a
cache line. In this expression we have eliminated triv-
ial overheads, such as pointers to per-processor data
cache tables.

5.2 Multiple Memory Hierarchies

Since only a small number of functions are required
to attach a memory hierarchy to SIMICS (see table 3),
and since these are not on the critical path, SIMICS
supports multiple memory hierarchies in a single bi-
nary. Which memory hierarchy module to use can be
selected interactively.

5.3 Memory Profiling

The techniques described thus far limit analysis of
memory behavior to implementing a memory hierar-
chy. For some classes of studies, we may wish to look
at every memory access, and then the overhead of
calling through the modules would be high. As de-
scribed in the section on intermediate code support,
since SIMICS uses an intermediate code for interpreta-
tion then the set of intermediate pseudo-instructions
can include statistics-specific versions.

To demonstrate this, we implemented memory pro-
filing using a specialized set of memory access instruc-
tions. In the simplest case, memory profiling involves
maintaining a bit map (possibly compressed) of all
bytes in memory. The bitmap is initialized to zero,
and each individual bit is set by a write to that mem-
ory address. A more sophisticated version would keep
counters for all memory locations.



When memory profiling is enabled, instructions
that operate on memory keep track of which bytes
in memory have been written to. This allows an ex-
act measurement of working set size. Also, since these
maps are easily zeroed, it allows sections of program
execution to be profiled interactively to study the frag-
mentation of memory accesses in portions of a pro-
gram.

Also, the implemented memory profiling can op-
tionally break on uninitialized memory reads [20].
This allows us to locate the locations in the boot phase
of an operating system that might incorrectly depend
on the state of undefined memory. Note that tradi-
tional memory profiling techniques are not suitable in
this instance, since the boot phase of an operating
system involves hand-crafted assembler code and run-
time modifications of code or run-time linking.

6 Unix Emulation

The Sparc version of SIMICS supports emulation
of a subset of the Solaris 2.x application binary in-
terface. The support duplicates key data structures
and algorithms of the System V kernel, including com-
mon Unix system calls such as ezecve(), fork(), and
mmap(). The code (currently around 4000 lines of C)
actually emulates aspects of the Unix execution en-
vironment such as pre-emptive multitasking, copy-on-
write fork() semantics, and sharing of file table entries.
Running in “Unix mode” can be enabled interactively.

The STC in SIMICS allowed quick implementation
of TLB simulation and page fault handling. An STC
miss triggers a look-up in a fully associative TLB,
which if it fails is followed by a search through the
current process’ memory regions. Thanks to the filter-
ing function of the STC mechanism, these algorithms
could be implemented with little concern for efficiency.
Indeed, much of the core code of the Unix emulation
support was written in a week.

7 Multiprocessor Considerations
SiMICS simulates the concurrency of multiproces-
sors by round-robin scheduling the processors. Each
processor is simulated for a fixed time-slice (deter-
mined by the user) before switching. This switch must
be efficient, or the user will be limited to using long
switching intervals [24]. The STC implementation de-
scribed above requires one pointer to be allocated in
a global register during interpretation. It needs to be
reloaded from memory upon every processor switch.
This is the only overhead that the memory simulation
directly contributes to multiprocessor simulation.

8 Performance

The actual performance of SIMICS with the mem-
ory simulation features described in this paper is dif-
ficult to quantify. The simplest measurement of simu-
lator performance in general is the number of instruc-
tions interpreted per second. However, this number
will vary greatly depending on the application and
what features are enabled.

Table 4 lists three examples that illustrate the
performance.' For each, we compare the performance

13The measurements were done on a Sun SC2000, with

loss of activating data cache simulation with another
useful feature in SIMICS, instruction profiling. In-
struction profiling counts exactly how many times an
instruction in a particular memory location was suc-
cessfully executed.'® We also indicate the combined
effects.

No Data
(a) Dhrystone 2.1 Cache Data Cache
Do fhstruction | 9160 (0%) | 2117 (2%)
Profiting " 1824 (-16%) | 1827 (-15%)
No Data
(b) 023.eqntott Coche Data Cache
No struction | 1717 (0%) | 1864 (+9%)
Instruction
Profiling 1564 (-9%) 1640 (-4%)
No Data
(¢) rt kernel Coache Data Cache
No Instruction
Profiling 496 (0%) 478 (-4%)
Instruction
Profiling 438 (-12%) 439 (-11%)

Table 4: Performance figures in thousands of instruc-
tions per second. Figure in parenthesis is the penalty
for the feature.

The first example runs a simple Sparc SunOS 4.1
user program, the infamous Dhrystone 2.1 bench-
mark [44]. In the measurement, it runs 100 000 it-
erations, which requires approximately 50 million in-
structions. The cache performance is here excellent
(0.001% miss rate), so the STC performs admirably.
Accurate data cache contents are maintained at a 2%
performance loss.

The second example runs a much larger Sparc pro-
gram from the SPECint92 suite [40], which requires
1.25 billion instructions to complete. The data cache
behavior is worse (a realistic working set), and the
memory hierarchy simulation code is thus called more
often. Despite this, SIMICS actually runs faster with
cache simulation enabled.!®

Our third example is considerably different. It is a
measurement of the boot process of a industry proto-

50MHz SuperSparc processors.

14Tn system-level simulation this is more complex than just
measuring entries into basic blocks, for several reasons; a basic
block may be interrupted by an exception and not re-entered,
the program may generate code at runtime (such as trap vec-
tors), etc.

15Performance for SIMICS will easily vary by 10-15%, due to
effects such as internal hash table collisions, etc. As we de-
scribed previously, the STC uses a finer granularity in its hash
tables when cache simulation is enabled, which could account
for this irregularity.



type real-time kernel running on an 88110-based archi-
tecture [29]. The absolute performance is much lower
because the core interpreter is older and the boot pro-
cess is intensive in page faults, interrupts, and device
programming. The cache performance is poor since
this version of the kernel did not cache portions of the
address space. Again, simulating the data cache only
diminishes performance slightly.

We used a snapshot version of SIMICS for the above
measurements. By contrast, carefully tuned versions
running 023.eqntott have peaked at 4.2 Mips with all
features turned off. We would expect the penalties
indicated in table 4 to be higher on faster versions.

9 Related Work

Traditionally, the approach used to gather com-
plete address traces of multiprogram and OS work-
loads involved microcode or different forms of hard-
ware monitoring or modifications [1, 13, 30, 41]. Re-
cently, more flexible techniques have been developed
that rely “only” on the manipulation of ECC bits in
the host memory and clever modifications to the host
operating system [32, 42]. In general, these techniques
are unwieldy and inflexible.

Instrumenting the program binary is a common
software solution to simulation. However, this ap-
proach tends to sharply constrain the class of pro-
grams that can be studied, in particular the program-
ing language and/or compiler being used. For exam-
ple, PROTEUS [10] requires the C compiler to sup-
port specific extensions to the C language, RPPT [15]
requires the program to be written in Concurrent C,
Tango [16] requires the program to be written using
ANL macros [9], and Larus” Abstract Execution [22]
requires a modified GNU C compiler. Generally, in-
strumenting the code is restricted to user-level pro-
grams, although recent work demonstrates that it can
be extended to simultaneously instrument parts of the
host operating system [12].

Analyzing the memory accesses of a program can
also be done using straight-forward interpretation,
passing all memory references to a memory simulator.
An example is the CacheMire testbench [11]. This ap-
proach is sometimes called program-driven simulation.
Mint [43] has a similar approach, though it can also
generate run-time code in order to speed up execution.

Program-driven simulation can be extended to per-
form a full logical-to-physical translation on every
memory access and simulating memory-mapped de-
vices, allowing the interpreter to support arbitrary
programs including multitasking operating systems
running on parallel hardware. An example is Talis-
man [7]. Talisman performs a detailed simulation of
the Meerkat [6] memory system, doing a function call
on each memory access. This scheme slows down the
simulation, but permits accurate timing. A speedier
predecessor to Talisman, g88 [5], simulated an “infi-
nite” TLB using a double indirection that was filled
with a simulated hardware table walk on misses. It
did not simulate data caches. (g88 is in many senses
also a predecessor of SIMICS.) Another example is Hal-
sim [4].

In a way, a lesson learned from hardware moni-
toring is that the most efficient technique for mem-

ory simulation is to avoid it entirely. Several differ-
ent software-based approaches use variations on this
theme. A common example is traditional debuggers,
which rely on the operating system and native hard-
ware to run the program while the debugger maintains
control using OS support (e.g. the Unix pirace() sys-
tem call).

In Shade [14], the simulator and the program share
the same Unix process address space. A fixed offset is
added to every simulated memory access to yield the
real address. Shade generates native code at run-time
to simulate the program code. This scheme allows
Shade to vary the amount and type of trace instru-
mentation dynamically, under the control of an ana-
lyzer program written by a user. However, the current
memory simulation in Shade is restricted to user-level,
well-behaved, Unix programs with continuous address
space. The continuous address space restriction disal-
lows simulating a shared multiprocessor, for instance,
where portions of the address spaces overlap (stack).

The SimOS [33] environment supports a direct eze-
cution mode wherein the operating system and appli-
cations run on a virtual machine implemented within
a Unix process. Careful use of mmap() maps a subset
of the target TLB into the host TLB. By modifying
the IRIX Unix kernel to be able to execute in a user
process, the execution of a full multi-tasking operat-
ing system with applications can be “fast forwarded”.
While being fast forwarded, user programs must be
well-behaved: since the subset of target TLB:s cannot
be split into “target user” and “target system” entries,
they have full access to the entire simulated physical
memory.

Upon reaching a portion of interest, the execution
can continue in a more detailed fast mode that uses
run-time binary translation to emulate the CPU and
MMU in software. In fast mode, SimOS performs ad-
dress translation, page protection check, and cache
residency check in an optimized sequence of 12 in-
structions. This density is achieved by using large
tables: a 4 MB array for address translation and an
array of around 32 MB for cache and TLB protection
check. By contrast, SIMICS, using the techniques in
this paper, does the same work in 6 instructions and
an overhead of 24 kB per processor for the STC ta-
bles. Note also that these large tables makes context
switches expensive, which could be a bottleneck in en-
vironments with very many light-weight processes.

Both Shade and SimOS rely on a close mapping
between the target and host hardware and operating
system. Neither is particularly portable.

A common characteristic of the above approaches is
that little is done to help the user implement efficient
memory hierarchies. Typically, the simulator explic-
itly passes information on all memory accesses to the
user simulation code. This has led to a situation where
simulator execution time has been dominated by simu-
lation of caches, interconnection network, etc. In turn,
this has led to the (incorrect) conclusion that it is not
worthwhile laboring on very fast software simulation
techniques. The STC design in SIMICS, by contrast,
can radically reduce the performance impact of slow
end-user code.



Summary and Conclusions

We presented several techniques that are useful
when designing an efficient system-level instruction
set simulator. We have addressed the problem of effi-
ciently simulating memory, including cache, so that
the performance is not too heavily penalized when
simulating a memory hierarchy and gathering statis-
tics. These techniques are more efficient and flexible
than previous designs, and should be useful to several
existing simulation environments.

Despite having a heavily optimized simulator core,
we have written SIMICS in a sufficiently modular fash-
ion to support simple addition of new memory hierar-
chies and interactive specification of number of nodes
and processors. Physical memory, data structures for
cache simulation, and intermediate code pages are al-
located lazily.

The design ideas have been used to implement ef-
ficient multiprocessor simulators based on Motorola’s
88110 processor and Sun’s Sparc v8 architecture. The
resulting simulator runs programs, including system-
level binaries, at around 2 million instructions per sec-
ond on a high-end Sun workstation.

Traditional simulators typically delegate all work
in handling memory references to “trace consumers”
written by end users. By using the STC module in
SiMICS, an analyzer program can get help from a care-
fully programmed simulator core to filter out superflu-
ous information, thus sharply reducing the overhead
of simulating caches.

We conclude that the techniques can be applied to
simulate any similar RISC-like architecture and that
the performance of a simulator is not dominated by
statistics instrumentation if designed carefully. Fur-
thermore, the performance benefits yielded by these
techniques is an argument in favor of program-driven
simulation in general.
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