

Transmeta Crusoe:

Hardware, Software,
and Development

Pardo

AMAS-BT 2009

Transmeta Crusoe

Crusoe: The First Commercial
Dynamic Translation Processor

Original Vision
 x86 is the industry-standard ABI

 But x86 processors are complex
 And VLIW is simple, cheap, & fast – but not x86
 Shade: simulation is “fast”

 So:
 Build a simple, cheap, fast VLIW
 Run x86 via simulation
 Develop HW & SW in parallel

 Sooner hardware is faster hardware

Today's Talk
 10,000 metre overview

 Hardware
 Code Morphing Software (“CMS”)
 Supporting software
 Experiences (“story hour”)
 Q&A

 Today: Crusoe
 Not today: Efficeon

Crusoe Hardware
 VLIW

 5-deep pipe
 4-wide issue
 Fast clock (almost)
 Small chip

 Plus simulation support
 Generic simulation support
 x86-specific support

 No x86 instruction decoding (100% simulation)

Generic Simulation Support

 “Shadowed” registers, commit/abort

 Commit:

 Abort:

 Gated store buffer: drain on commit
 “Shadowed memory” without extra RAM

 Speculate to go fast; if unexpected, abort

working committed

R0 ↔
R1 ↔

… ↔

More Generic Support

 Goal: out-of-order execution
 Software speculatively reorders loads & stores
 Simple alias hardware: “load and protect”

 Save address
 Compare against other loads & stores

 Hardware trap if speculation fails while running
 Software deals with failed speculation

x86-Specific Support

 x86 condition codes
 Carry = ...
 Overflow = …
 …
 Varies by instruction

 Complicated to simulate in SW
 “Free” for SW if done in HW
 Non-x86 targets: simulate CCs in SW

More x86 Support

 Low memory: A20M

Some addresses:

Read: memory or I/O

Write: memory or I/O
 Steered separately!
 Holes!
 Hardware steering

 Software control

PCI address RAM

RW

 RW

RW

 R W

 W R

legacy
video

 RW

RW

 RW

Low Power
 Simple: low power
 x86 instruction decode

 P4: 1/4 of area, 1/3 of power (worst case)
 Crusoe: x86 decode in software...

 Time spent decoding is power and performance
 Good overall as long as decode is “not too often”

 LongRun
 Drop the frequency → drop the voltage
 P~V2F: 90% CPU speed → 70% dynamic power
 Over 90% performance: memory stays at 100%

Software:
Simulate The Whole x86

 Code Morphing Software (CMS)
 Crusoe's “Microcode”

 Original vision: simple translator
 Shade

 Translation: 100 I/I
 Performance: 3:1 integer, 1:1 FP

Simulator Complications
 Compared to Shade:

 x86: more complex behavior, SMC harder
 User + kernel
 VLIW scheduling
 Reuse rates (or lack thereof)

 Crusoe translation: 10,000 I/I
 Peak performance: often better than 1:1 int/FP
 But: translation costs, memory bottlenecks, ...
 Performance: varies with time, application
 Humans remember “slow”

Results (Generalizations)

 Very good reliability
 New HW, new SW, new strategy, new people

 Cost: good
 ~1/2 Intel/AMD parts

 Power: good
 ~1/3 Intel/AMD parts

 Performance: ummm...
 Next slide!

Performance Generalizations
 Crusoe much faster than low-power parts
 But: a lot slower than Intel 15W mobile parts
 Compute-bound: often faster at much lower

Watts
 Memory/cache traffic: slower
 Low reuse: translation overhead → slower
 PCI graphics, not AGP
 Non-overlapped compute and I/O
 Humans notice delays, not asymptotes
 Variable: within and across applications

How To Go Faster?

 Lower translation cost
 Faster translations
 Faster memory
 Faster graphics (AGP vs. PCI)
 Overlap compute and I/O (DMA in SW)
 Faster VLIW – more Hz, more issue width

 Efficeon (Crusoe successor) much better!

Performance
(More Generalizations)

 Crusoe FP was fast...

2000 Crusoe CPU-bound FP ~ 2009 Atom

At same Watts

 2004 Efficeon ~ 2009 Atom

At same Watts

Supporting Software

 Crucial to making Crusoe!
 Reference Simulator
 Fast VLIW simulator
 Tests
 Farm
 Debug tools
 Build Tools
 Performance Tools

 Theme: automate, automate, automate

Reference Simulator

 Defines “What is an x86”
 Standard of comparison for CMS+VLIW
 The standard changes constantly

 The reference is hard to pin down...

 Correctness is important
 Speed is important

 Boot and run tests, OSes, etc.
 Often before trying on CMS+VLIW

Fast VLIW Simulator

 Run CMS years before working HW
 Remove CMS workarounds before fixed HW
 Reproducible debugging

 “Software leads hardware”

 ~30 I/I – running on an x86, simulating VLIW
 Lots of useful features (below)
 Itself a study in fast simulator construction

Feature: Narrowing
 Simulators support checkpoint and restart
 “Reverse execution”: gotox NUM

 “Cosimulation”: run two simulators together

Run N x86 instructions on each

Stop and compare all state
 “Nexus”: binary search for first difference

 Show exactly which bits diverged and why
 Automatic
 Often: fix it right now

Tests
 Conventional: hand-written VLIW, x86
 Unconventional: pseudo-random tests

 Biased random – guide to “interesting” cases
 But still many benefits of randomness
 Instruction-level, system-level

 “Test” means “checkable”
 Wrong answer not detected by benchmark
 A crash is obviously wrong!
 Divergence under cosimulation

 ~Everything is a test

Farm
 Machines

 PCs to run simulators
 Real VLIW hardware

 Automation infrastructure
 Allocate any machine for any purpose
 Reallocate with any CMS, BIOS, disk image
 Live debug of CMS error from 1,000 km away

 More automation
 Run to failure, snapshot, human gets “later”
 Gets the failing instruction, which bits are wrong

Debug Tools

 VLIW HW debugger
 UI same as VLIW simulator debugger
 State save immediately on reset (after crash)
 Download state for offline examination
 Single-step through nested fault handling

 (Reverse HW execution started, not finished.)

Build Tools

 Fast build/test server
 Full and incremental are run in parallel
 Check in early and often
 Fast feedback – a few minutes

 On failure: binary search of checkins
 Automation

Performance Tools
 CMS instruments translations (Shade!)
 Postmortem “fly over” of whole execution
 Visualize big trends across time: retranslation

rates, I/I efficiency, cache/memory stalls, I/O,
code paths…

 Telescope “zoom in”
 Some: phases with similar trend data
 Lots: trace data for individual translations

 Fast
 Find lots of performance bugs quickly

Story Hour – Lessons

 New HW, new SW, new tools, modified BIOS
 Bound to be lots of stories
 Some unusual & educational experiences

 Bug1: MS-DOS boot – ~30,000 instructions in

“The timer interrupt handler is called too often”

Hardware bug, change CMS to work around it
 Some “critical” HW bugs made invisible to user
 Keep working in parallel w/ HW fix & tapeout

Story Hour 2

 Bug2: ~100,000 in: state smash on interrupts
 CMS nonshadowed resource rollback hazard

 read X ; write X ; rollback ; read X

 After rollback: still have new X. Oops!
 Fix
 Add rule checkers

 “Never again.”
 Everybody “learns” from one mistake

What Would I Do Different?
Technical Lessons

 Getting reliable HW was a big delay
 I thought software would be the problem!
 Experienced HW team, but Crusoe different

 ISA not fixed, changing (for performance)
 Big project “rules of thumb” don't work so well
 Interactions different in a small team

 Better performance studies from “go”
 Is “Problem X” due to x86, VLIW, CMS, ...?
 (Fewer late HW changes!)

 More software inspection

Summary

 Crusoe:
 Met many requirements and goals
 Good reliability, needed better performance
 (Efficeon)

 Support – Crusoe is only half the story
 Tools are crucial
 Automation is crucial

 Paper: lots more details
 Including more “story hour”

Conclusion

Crusoe: The First Commercial
Dynamic Translation Processor

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

