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Crusoe: The First Commercial
Dynamic Translation Processor



  

Original Vision
 x86 is the industry-standard ABI

 But x86 processors are complex
 And VLIW is simple, cheap, & fast – but not x86
 Shade: simulation is “fast”

 So:
 Build a simple, cheap, fast VLIW
 Run x86 via simulation
 Develop HW & SW in parallel

 Sooner hardware is faster hardware



  

Today's Talk
 10,000 metre overview

 Hardware
 Code Morphing Software (“CMS”)
 Supporting software
 Experiences (“story hour”)
 Q&A

 Today: Crusoe
 Not today: Efficeon



  

Crusoe Hardware
 VLIW

 5-deep pipe
 4-wide issue
 Fast clock (almost)
 Small chip

 Plus simulation support
 Generic simulation support
 x86-specific support

 No x86 instruction decoding (100% simulation)



  

Generic Simulation Support

 “Shadowed” registers, commit/abort

 Commit: 

 Abort:    

 Gated store buffer: drain on commit
 “Shadowed memory” without extra RAM

 Speculate to go fast; if unexpected, abort

working committed

R0 ↔
R1 ↔

… ↔



  

More Generic Support

 Goal: out-of-order execution
 Software speculatively reorders loads & stores
 Simple alias hardware: “load and protect”

 Save address
 Compare against other loads & stores

 Hardware trap if speculation fails while running
 Software deals with failed speculation



  

x86-Specific Support

 x86 condition codes
 Carry = ...
 Overflow = …
 …
 Varies by instruction

 Complicated to simulate in SW
 “Free” for SW if done in HW
 Non-x86 targets: simulate CCs in SW



  

More x86 Support

 Low memory: A20M

Some addresses:

Read: memory or I/O

Write: memory or I/O
 Steered separately!
 Holes!
 Hardware steering

 Software control

PCI address RAM

RW

 RW

RW

 R W 

 W R 

legacy
video

 RW

RW

 RW



  

Low Power
 Simple: low power
 x86 instruction decode

 P4: 1/4 of area, 1/3 of power (worst case)
 Crusoe: x86 decode in software...

 Time spent decoding is power and performance
 Good overall as long as decode is “not too often”

 LongRun
 Drop the frequency → drop the voltage
 P~V2F: 90% CPU speed → 70% dynamic power
 Over 90% performance: memory stays at 100%



  

Software:
Simulate The Whole x86

 Code Morphing Software (CMS)
 Crusoe's “Microcode”

 Original vision: simple translator
 Shade

 Translation: 100 I/I
 Performance: 3:1 integer, 1:1 FP



  

Simulator Complications
 Compared to Shade:

 x86: more complex behavior, SMC harder
 User + kernel
 VLIW scheduling
 Reuse rates (or lack thereof)

 Crusoe translation: 10,000 I/I
 Peak performance: often better than 1:1 int/FP
 But: translation costs, memory bottlenecks, ...
 Performance: varies with time, application
 Humans remember “slow”



  

Results (Generalizations)

 Very good reliability
 New HW, new SW, new strategy, new people

 Cost: good
 ~1/2 Intel/AMD parts

 Power: good
 ~1/3 Intel/AMD parts

 Performance: ummm...
 Next slide!



  

Performance Generalizations
 Crusoe much faster than low-power parts
 But: a lot slower than Intel 15W mobile parts
 Compute-bound: often faster at much lower 

Watts
 Memory/cache traffic: slower
 Low reuse: translation overhead → slower
 PCI graphics, not AGP
 Non-overlapped compute and I/O
 Humans notice delays, not asymptotes
 Variable: within and across applications



  

How To Go Faster?

 Lower translation cost
 Faster translations
 Faster memory
 Faster graphics (AGP vs. PCI)
 Overlap compute and I/O (DMA in SW)
 Faster VLIW – more Hz, more issue width

 Efficeon (Crusoe successor) much better!



  

Performance
(More Generalizations)

 Crusoe FP was fast...

2000 Crusoe CPU-bound FP ~ 2009 Atom

At same Watts

 2004 Efficeon ~ 2009 Atom

At same Watts



  

Supporting Software

 Crucial to making Crusoe!
 Reference Simulator
 Fast VLIW simulator
 Tests
 Farm
 Debug tools
 Build Tools
 Performance Tools

 Theme: automate, automate, automate



  

Reference Simulator

 Defines “What is an x86”
 Standard of comparison for CMS+VLIW
 The standard changes constantly

 The reference is hard to pin down...

 Correctness is important
 Speed is important

 Boot and run tests, OSes, etc.
 Often before trying on CMS+VLIW



  

Fast VLIW Simulator

 Run CMS years before working HW
 Remove CMS workarounds before fixed HW
 Reproducible debugging

 “Software leads hardware”

 ~30 I/I – running on an x86, simulating VLIW 
 Lots of useful features (below)
 Itself a study in fast simulator construction



  

Feature: Narrowing
 Simulators support checkpoint and restart
 “Reverse execution”: gotox NUM

 “Cosimulation”: run two simulators together

Run N x86 instructions on each

Stop and compare all state
 “Nexus”: binary search for first difference

 Show exactly which bits diverged and why
 Automatic
 Often: fix it right now



  

Tests
 Conventional: hand-written VLIW, x86
 Unconventional: pseudo-random tests

 Biased random – guide to “interesting” cases
 But still many benefits of randomness
 Instruction-level, system-level

 “Test” means “checkable”
 Wrong answer not detected by benchmark
 A crash is obviously wrong!
 Divergence under cosimulation

 ~Everything is a test



  

Farm
 Machines

 PCs to run simulators
 Real VLIW hardware

 Automation infrastructure
 Allocate any machine for any purpose
 Reallocate with any CMS, BIOS, disk image
 Live debug of CMS error from 1,000 km away

 More automation
 Run to failure, snapshot, human gets “later”
 Gets the failing instruction, which bits are wrong



  

Debug Tools

 VLIW HW debugger
 UI same as VLIW simulator debugger
 State save immediately on reset (after crash)
 Download state for offline examination
 Single-step through nested fault handling

 (Reverse HW execution started, not finished.)



  

Build Tools

 Fast build/test server
 Full and incremental are run in parallel
 Check in early and often
 Fast feedback – a few minutes

 On failure: binary search of checkins
 Automation



  

Performance Tools
 CMS instruments translations (Shade!)
 Postmortem “fly over” of whole execution
 Visualize big trends across time: retranslation 

rates, I/I efficiency, cache/memory stalls, I/O, 
code paths…

 Telescope “zoom in”
 Some: phases with similar trend data
 Lots: trace data for individual translations

 Fast
 Find lots of performance bugs quickly



  

Story Hour – Lessons

 New HW, new SW, new tools, modified BIOS
 Bound to be lots of stories
 Some unusual & educational experiences

 Bug1: MS-DOS boot – ~30,000 instructions in

“The timer interrupt handler is called too often”

Hardware bug, change CMS to work around it
 Some “critical” HW bugs made invisible to user
 Keep working in parallel w/ HW fix & tapeout



  

Story Hour 2

 Bug2: ~100,000 in: state smash on interrupts
 CMS nonshadowed resource rollback hazard

 read X ; write X ; rollback ; read X

 After rollback: still have new X.  Oops!
 Fix
 Add rule checkers

 “Never again.”
 Everybody “learns” from one mistake



  

What Would I Do Different?
Technical Lessons

 Getting reliable HW was a big delay
 I thought software would be the problem!
 Experienced HW team, but Crusoe different

 ISA not fixed, changing (for performance)
 Big project “rules of thumb” don't work so well
 Interactions different in a small team

 Better performance studies from “go”
 Is “Problem X” due to x86, VLIW, CMS, ...?
 (Fewer late HW changes!)

 More software inspection



  

Summary

 Crusoe:
 Met many requirements and goals
 Good reliability, needed better performance
 (Efficeon)

 Support – Crusoe is only half the story
 Tools are crucial
 Automation is crucial

 Paper: lots more details
 Including more “story hour”



  

Conclusion

Crusoe: The First Commercial
Dynamic Translation Processor
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