

Transmeta Crusoe:

Hardware, Software,
and Development

Pardo

AMAS-BT 2009

Transmeta Crusoe

Crusoe: The First Commercial
Dynamic Translation Processor

Original Vision
 x86 is the industry-standard ABI

 But x86 processors are complex
 And VLIW is simple, cheap, & fast – but not x86
 Shade: simulation is “fast”

 So:
 Build a simple, cheap, fast VLIW
 Run x86 via simulation
 Develop HW & SW in parallel

 Sooner hardware is faster hardware

Today's Talk
 10,000 metre overview

 Hardware
 Code Morphing Software (“CMS”)
 Supporting software
 Experiences (“story hour”)
 Q&A

 Today: Crusoe
 Not today: Efficeon

Crusoe Hardware
 VLIW

 5-deep pipe
 4-wide issue
 Fast clock (almost)
 Small chip

 Plus simulation support
 Generic simulation support
 x86-specific support

 No x86 instruction decoding (100% simulation)

Generic Simulation Support

 “Shadowed” registers, commit/abort

 Commit: 

 Abort: 

 Gated store buffer: drain on commit
 “Shadowed memory” without extra RAM

 Speculate to go fast; if unexpected, abort

working committed

R0 ↔
R1 ↔

… ↔

More Generic Support

 Goal: out-of-order execution
 Software speculatively reorders loads & stores
 Simple alias hardware: “load and protect”

 Save address
 Compare against other loads & stores

 Hardware trap if speculation fails while running
 Software deals with failed speculation

x86-Specific Support

 x86 condition codes
 Carry = ...
 Overflow = …
 …
 Varies by instruction

 Complicated to simulate in SW
 “Free” for SW if done in HW
 Non-x86 targets: simulate CCs in SW

More x86 Support

 Low memory: A20M

Some addresses:

Read: memory or I/O

Write: memory or I/O
 Steered separately!
 Holes!
 Hardware steering

 Software control

PCI address RAM

RW

 RW

RW

 R W 

 W R 

legacy
video

 RW

RW

 RW

Low Power
 Simple: low power
 x86 instruction decode

 P4: 1/4 of area, 1/3 of power (worst case)
 Crusoe: x86 decode in software...

 Time spent decoding is power and performance
 Good overall as long as decode is “not too often”

 LongRun
 Drop the frequency → drop the voltage
 P~V2F: 90% CPU speed → 70% dynamic power
 Over 90% performance: memory stays at 100%

Software:
Simulate The Whole x86

 Code Morphing Software (CMS)
 Crusoe's “Microcode”

 Original vision: simple translator
 Shade

 Translation: 100 I/I
 Performance: 3:1 integer, 1:1 FP

Simulator Complications
 Compared to Shade:

 x86: more complex behavior, SMC harder
 User + kernel
 VLIW scheduling
 Reuse rates (or lack thereof)

 Crusoe translation: 10,000 I/I
 Peak performance: often better than 1:1 int/FP
 But: translation costs, memory bottlenecks, ...
 Performance: varies with time, application
 Humans remember “slow”

Results (Generalizations)

 Very good reliability
 New HW, new SW, new strategy, new people

 Cost: good
 ~1/2 Intel/AMD parts

 Power: good
 ~1/3 Intel/AMD parts

 Performance: ummm...
 Next slide!

Performance Generalizations
 Crusoe much faster than low-power parts
 But: a lot slower than Intel 15W mobile parts
 Compute-bound: often faster at much lower

Watts
 Memory/cache traffic: slower
 Low reuse: translation overhead → slower
 PCI graphics, not AGP
 Non-overlapped compute and I/O
 Humans notice delays, not asymptotes
 Variable: within and across applications

How To Go Faster?

 Lower translation cost
 Faster translations
 Faster memory
 Faster graphics (AGP vs. PCI)
 Overlap compute and I/O (DMA in SW)
 Faster VLIW – more Hz, more issue width

 Efficeon (Crusoe successor) much better!

Performance
(More Generalizations)

 Crusoe FP was fast...

2000 Crusoe CPU-bound FP ~ 2009 Atom

At same Watts

 2004 Efficeon ~ 2009 Atom

At same Watts

Supporting Software

 Crucial to making Crusoe!
 Reference Simulator
 Fast VLIW simulator
 Tests
 Farm
 Debug tools
 Build Tools
 Performance Tools

 Theme: automate, automate, automate

Reference Simulator

 Defines “What is an x86”
 Standard of comparison for CMS+VLIW
 The standard changes constantly

 The reference is hard to pin down...

 Correctness is important
 Speed is important

 Boot and run tests, OSes, etc.
 Often before trying on CMS+VLIW

Fast VLIW Simulator

 Run CMS years before working HW
 Remove CMS workarounds before fixed HW
 Reproducible debugging

 “Software leads hardware”

 ~30 I/I – running on an x86, simulating VLIW
 Lots of useful features (below)
 Itself a study in fast simulator construction

Feature: Narrowing
 Simulators support checkpoint and restart
 “Reverse execution”: gotox NUM

 “Cosimulation”: run two simulators together

Run N x86 instructions on each

Stop and compare all state
 “Nexus”: binary search for first difference

 Show exactly which bits diverged and why
 Automatic
 Often: fix it right now

Tests
 Conventional: hand-written VLIW, x86
 Unconventional: pseudo-random tests

 Biased random – guide to “interesting” cases
 But still many benefits of randomness
 Instruction-level, system-level

 “Test” means “checkable”
 Wrong answer not detected by benchmark
 A crash is obviously wrong!
 Divergence under cosimulation

 ~Everything is a test

Farm
 Machines

 PCs to run simulators
 Real VLIW hardware

 Automation infrastructure
 Allocate any machine for any purpose
 Reallocate with any CMS, BIOS, disk image
 Live debug of CMS error from 1,000 km away

 More automation
 Run to failure, snapshot, human gets “later”
 Gets the failing instruction, which bits are wrong

Debug Tools

 VLIW HW debugger
 UI same as VLIW simulator debugger
 State save immediately on reset (after crash)
 Download state for offline examination
 Single-step through nested fault handling

 (Reverse HW execution started, not finished.)

Build Tools

 Fast build/test server
 Full and incremental are run in parallel
 Check in early and often
 Fast feedback – a few minutes

 On failure: binary search of checkins
 Automation

Performance Tools
 CMS instruments translations (Shade!)
 Postmortem “fly over” of whole execution
 Visualize big trends across time: retranslation

rates, I/I efficiency, cache/memory stalls, I/O,
code paths…

 Telescope “zoom in”
 Some: phases with similar trend data
 Lots: trace data for individual translations

 Fast
 Find lots of performance bugs quickly

Story Hour – Lessons

 New HW, new SW, new tools, modified BIOS
 Bound to be lots of stories
 Some unusual & educational experiences

 Bug1: MS-DOS boot – ~30,000 instructions in

“The timer interrupt handler is called too often”

Hardware bug, change CMS to work around it
 Some “critical” HW bugs made invisible to user
 Keep working in parallel w/ HW fix & tapeout

Story Hour 2

 Bug2: ~100,000 in: state smash on interrupts
 CMS nonshadowed resource rollback hazard

 read X ; write X ; rollback ; read X

 After rollback: still have new X. Oops!
 Fix
 Add rule checkers

 “Never again.”
 Everybody “learns” from one mistake

What Would I Do Different?
Technical Lessons

 Getting reliable HW was a big delay
 I thought software would be the problem!
 Experienced HW team, but Crusoe different

 ISA not fixed, changing (for performance)
 Big project “rules of thumb” don't work so well
 Interactions different in a small team

 Better performance studies from “go”
 Is “Problem X” due to x86, VLIW, CMS, ...?
 (Fewer late HW changes!)

 More software inspection

Summary

 Crusoe:
 Met many requirements and goals
 Good reliability, needed better performance
 (Efficeon)

 Support – Crusoe is only half the story
 Tools are crucial
 Automation is crucial

 Paper: lots more details
 Including more “story hour”

Conclusion

Crusoe: The First Commercial
Dynamic Translation Processor

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

