
Fast Microcode Interpretation with Transactional Commit/Abort

Jens Tröger
jens.troeger@intel.com

Darek Mihočka
darekm@emulators.com

Pardo
david.keppel@intel.com

Abstract

This paper describes the design and implementation of
a fast microcode interpreter for functional system simula-
tion. While we primarily target architecture simulation, the
design principles can easily be applied to high-level and
byte-code interpreters as well.

A functional system simulator executes an entire guest
operating system stack and applications, inside a soft-
ware simulated environment. Such simulators do not simu-
late cycle accuracy, but run fast enough to run real-world
workloads. System simulators depend on the architecture
of both guest and host, so are traditionally hand-written
and tailored to the respective architectures. Performance
optimizations like dynamic compilation to host code or as-
sembly coding of key routines are common, but further
increase host and guest dependency. The interpreter de-
scribed here is substantially independent of the host, is
easily retargeted to new guests, yet achieves performance
competitive with much more hand-crafted simulators.

Most functional simulators implement a traditional
guest instruction set with simple and independent opera-
tions such as loads, adds, and so on. In contrast, simu-
lating microcode is difficult because each instruction has
many sub-operations – which may depend on each other,
and which must atomically commit or abort as a single
transaction. This paper describes techniques for high-
performance transactional simulation.

The paper measures real-world workloads like Win-
dows71 and Linux boot, and application runs of Office, web
browsers, and more. We also report very machine specific
performance details using micro-benchmarks. We then use
that data as a guide for the design and implementation of
an interpreter that achieves high performance, host porta-
bility via coding in ”plain” C++, and guest retargetability
via a machine-generated instruction parser and abstracted
operations that are reused in retargeting.

Initial results show execution on modern processors as
fast as a few tens of host cycles per simulated guest in-
struction, thus executing hundreds of millions operations
per second, and tens to hundreds of millions of guest in-
structions per second, depending on their complexity.

1Trade names in this paper are the property of their owners.

Keywords: functional system simulation, microcode interpre-
tation, binary translation, instrumentation

1. Introduction

System simulation allows for execution of system level
software in a controlled software environment. The si-
mulator implements a ”guest” CPU architecture, physical
memory, TLBs, optionally caches, and some essential de-
vices like timers and serial I/O devices. The goal is to run
unmodified firmware and an operating system stack with
applications, ideally with the guest software unable to de-
tect it is not running on real hardware. The system simula-
tor itself is an application that runs on the ”host” machine.

System simulation has many applications. One com-
mon use is migration of legacy software to new and dif-
ferent host architectures. Architecture research and exper-
imentation uses simulation to explore novel features with-
out building hardware, and to collect detailed information
used to refine proposed new features. Simulators can sand-
box a guest software stack in a secure and controlled execu-
tion environment for scalable cloud computing. Simulators
are also used for debugging low-level code where using a
debugger on real hardware is hard, and for developing and
validating code where new hardware does not yet exist. Fi-
nally, a system simulator can observe, log, and manipulate
a guest software stack, thus collecting arbitrary informa-
tion about the dynamic behavior of the guest software and
allowing performance analysis and tuning that is difficult
or impossible on real hardware.

There are many approaches to simulation, depending
on the desired accuracy. For example, cycle- and timing-
accurate simulators mimic low-level implementation de-
tails of guests. Performance data is accurate, but may cost
thousands or millions of host cycles to accurately simu-
late bus contention, full-buffer stalls, and so on. The slow
speed usually limits what software can be run. Conversely,
functional simulators hide many details of the guest, to im-
prove simulation speed. As a result, functional simulators
can boot and run modern operating system stacks, execut-
ing billions of guest instructions in tens of seconds.

Even among functional simulators, there are many ap-

proaches. Decode-and-dispatch interpreters are often sim-
plest to build, but may take a thousand host cycles per
simulated guest instruction. Instruction decode cost often
dominates simulation speed, so threaded-code simulators
that cache decoded results are often much faster. Dynamic
cross compilation is faster yet because it can reduce inter-
instruction simulation costs, but code generators are a sig-
nificant effort to build and retarget [EG03]. Finally, user-
level simulation often provides highest performance and
simplest implementation, but is only able to run limited
software and cannot observe system details.

Most simulators in the literature are for guests with rel-
atively simple instructions. Even ”complex” instructions,
such as floating-point sin, are still conceptually orthogo-
nal and independent of other instructions. Microcode sim-
ulation is more complex, because each instruction is com-
posed of sub-operations that may have interdependencies,
can give rise to several simultaneous exceptions, and which
complete atomically. For example, a single microcode in-
struction may include memory, integer ALU, floating-point
ALU, and branch sub-operations; a compare sub-operation
may be forwarded to conditional branch logic in the same
microinstruction; multiple units may give rise to excep-
tions, which need to be prioritized; and results from all
sub-operations follow atomic commit/abort semantics. Ex-
isting simulator designs are poorly-suited to simulate such
a machine.

This paper discusses challenges implementing a
portable and high performance functional system-level in-
terpreter. The simulator is written in C++ and is easily
recompiled on different hosts. It avoids most direct host
dependencies – for example, it avoids multiplexing guest
condition codes on to host condition codes, and host/guest
endianess affects performance but not correctness. The
simulator is easily retargeted to different guest ISAs and
gives good performance for both conventional macro in-
struction sets and complex microcode.

Section 2 discusses different types of workloads and
benchmarks, their application, and how they influence the
design of our interpreter. Section 3 analyzes how design
decisions of existing interpreters and dynamic compilers
for system simulators affect their performance. Section 4
describes our internal virtual microcode architecture, and
introduces the design and implementation of our fast and
portable microcode interpreter. Finally, section 5 presents
initial performance results of our interpreter which demon-
strate the feasibility and benefits of our design.

2. Workloads and Benchmarks

A fast simulator must run common operations quickly.
To design one, we need to understand:

• what common and dominant guest workloads users
will run;

• what critical interpreter paths dominate performance
of these guest workloads; and

• how these paths are best executed on a given host ma-
chine.

For guest operations, it is important to measure large
workloads that are representative of what will be used
in simulation, since ”inner loop” benchmarks often hide
system-level behavior that in practice can dominate total
simulation cost.

For host operations, it is important to measure processor
performance in detail, to ensure the simulator makes good
use of the hardware microarchitecture, since small differ-
ences in cost often have a big impact on running time.

2.1. Application Benchmarks

We use guest workload data to discover what guest op-
erations are common or rare, and thus drive performance
decisions in the simulator design.

A workload is the code executed and data consumed by
an application to solve a given problem. A benchmark ex-
ercises one or several dedicated workloads. One widely-
used benchmark is SPEC [Cor10]. SPEC CPU, for in-
stance, is ”designed to provide performance measurements
... used to compare compute-intensive workloads on differ-
ent computer systems.” Other SPEC benchmarks focus on
power consumption, render speed and 3D workflows, par-
allel computation, server loads for virtual machines, and so
forth.

Another common approach is to run real-world appli-
cations concurrently so they compete with each other for
resources. One scenario, for example, is running a web
browser that renders media content, while also checking
email or playing a game. The data we used to design our
fast interpreter is largely from such real world scenarios,
and less from benchmarks.

2.2. Micro-Benchmarks

We use micro-benchmarks to understand performance
bottlenecks of a host CPU, and use that data to design the
data and code layout of our fast interpreter.

A micro-benchmark is a short sequence of instructions
that exercises one particular feature of the CPU. Listing 1
shows a micro-benchmark we designed to measure la-
tency of the x86 lahf instruction, an instruction often
used by interpreters and dynamic instrumentation tools to
retrieve some host arithmetic flags. Micro-benchmarks

1 mov ecx,1000000000
2 loop:
3 lahf
4 xor eax,eax
5 lahf
6 xor eax,eax
7 lahf
8 xor eax,eax
9 lahf

10 sub ecx,1
11 jne loop

Listing 1: Micro-benchmark to execute 4 billion LAHF instruc-
tions with EFLAGS update after each instruction to
prevent CPU internal microcode cheats.

Instruction Count
WindowsXP/32 boot 4,292,484,077
Windows7/64 boot 12,105,336,209
Windows7/32 boot, HD Video 32,549,751,890
Windows7/64 boot, Office 2010 581,278,454,698
LiveCD Suse Linux/64 boot 64,857,312,020
LiveCD Suse Linux/64 apps 3,313,655,494

Figure 1: Instructions executed for some real-world scenarios.

can measure latency of individual instructions, instruc-
tion sequences, load-hit-store or store-forwarding laten-
cies, cache miss penalties, and so forth.

2.3. Performance Data, Interpreter Design

Today’s most popular desktop architecture is Intel’s x86
architecture, often 32-bit but increasingly 64-bit, running
different operating systems like Windows, Linux, or OS X.
We use Intel’s 64-bit x86 architecture as our initial host,
though we plan to port the interpreter to other architectures.

Windows and Linux are the most popular and acces-
sible operating systems today, so we used them to gather
real-world guest workload data. We instrumented the
Bochs [Boc10, MS08] system simulator to collect data.

Figure 1 shows instructions executed for some real-
world scenarios. Instruction counts are absolute and are
”polluted” numbers, with every instruction the CPU sees,
not just instructions from a single application. We break
these numbers down further in later sections.

In contrast, figure 2 shows sample results from host
micro-benchmarks. These micro-benchmarks are partic-
ularly useful for implementating a fast interpreter, as they
dominate the implementation of control flow, function calls
and returns, and access to arithmetic flags and other execu-
tion context. The results are for three implementations of

P4 i7 SB
LAHF 8 2 2
PUSHF/POPF 97 26 22
SETC AL 1 1 1
FSTENV 316 98 97
FNSAVE 488 160 167
FXSAVE 135 92 64
CALL/RET 14 4 4
CALL mispredict 51 15 12
JECXZ predict 2 1 1
JECXZ mis-predict 22 13 6
L1 D$ miss latency 9 4 4
Load 32-byte cross 1 2 1
Load 64-byte cross 20 4 5
Load mapped page cross 73 24 28
W32, R8R8R8 39 3 3
W8W8W8, R32 35 16 18

Figure 2: Approximate cycle counts of instructions for the Intel
Pentium4 Xeon, Intel Core i7, and Sandy Bridge Core
i7 processors.

the Intel 64 architecture, and show how low-level imple-
mentation details may affect performance portability.

The first two sets of rows show approximate instruction
latencies to save and restore arithmetic flags and execution
context. Saving context is very expensive: even saving
only arithmetic flags is more expensive than just a single
setcc to store flags. The next two rows show approx-
imate latencies for predicted and mis-predicted function
calls and conditional control flow. These numbers demon-
strate the penalty of control flow misprediction.

The last set of numbers show the latency of an L1 data
cache miss with L2 hit, the costs of loads that cross align-
ment boundaries, and the penalties of store-forwarding
through writing a 32-bit value and reading it back in three
8-bit quantities, and vice versa. The importance of these
numbers is explained in following sections.

2.4. Further Data Analysis

Booting operating systems and running common user
applications produces the instruction counts of various
traces shown in figure 1. The distribution of x86 instruc-
tions shows 60% of dynamic instructions are made up of
only about 20 actual instructions: mainly loads and stores,
selected arithmetic instructions, and conditional and un-
conditional control flow.

Figure 3 shows total counts of select interesting instruc-
tions across four of our scenarios. Figure 4 shows the
distribution of the 20 hottest dynamic instructions of the
SuseLinux/64 Apps scenario. The breakdown varies little

Win7/64 boot SuseLinux/64 boot Office2010/32 SuseLinux/64 Apps
Top 20 59.3% 59.1% 52.89% 59.00%
MOV/64 16.03% 13.28% 7.1% 15.90%
MOV/32 10.87% 5.56% 9.2% 8.40%
MOV/8, MOV/16 4.25% 5.87% 3.45% 4.53%
JZ, JNZ 9.57% 10.68% 6.64% 9.14%
Jcc 3.57% 4.07% 4.41% 3.25%
LAHF, SAHF, PUSHF, POPF 0.002% 0.22% 0.0007% 0.34%
ADC, SBB 0.35% 0.25% 0.05% 0.12%
CALL, RET 1.84% 3.78% 1.44% 5.14%
x87 FP 0.001% 0.000% 0.02% 0.001%

Figure 3: Break-up of the dynamic instructions from figure 1.

Operation Count Quota Total
MOV GqEqM 232,397,067 7.013% 7.013%
MOV GqEqR 208,763,826 6.300% 13.313%
JZ 160,250,964 4.836% 18.149%
JNZ 142,558,476 4.302% 22.452%
POP RRX 116,318,547 3.510% 25.962%
PUSH RRX 109,188,708 3.295% 29.257%
MOV EqGqM 107,951,225 3.258% 32.515%
MOV GdEdR 101,166,140 3.053% 35.568%
ADD EqIdR 100,594,816 3.036% 38.604%
MOV64 GdEdM 86,416,769 2.608% 41.211%
RET 85,216,567 2.572% 43.783%
LEA GqM 82,643,279 2.494% 46.277%
CALL 77,833,440 2.349% 48.626%
TEST EqGqR 57,768,649 1.743% 50.369%
TEST EdGdR 57,299,987 1.729% 52.099%
MOVZX GdEbM 54,683,474 1.650% 53.749%
JMP 49,507,917 1.494% 55.243%
XOR GdEdR 43,189,064 1.303% 56.546%
NOP 40,838,707 1.232% 57.779%
CMP GqEqR 40,683,876 1.228% 59.006%

Figure 4: Top twenty instructions of the SuseLinux/64 Apps sce-
nario. Most scenarios show similar numbers.

across scenarios, even though the compilers, operating sys-
tems, and applications are quite different and scenarios are
built for either 32-bit and 64-bit host architectures.

Integer instructions are among the hottest instructions.
The most common integer type is the 32-bit wide int;
16-bit short is used almost never and 8-bit char only
sporadically. This aligns with the development of the Vi-
sual Studio, GNU, and Intel compilers over the past few
years. The default size for int is 32 bits, pointers are ei-
ther 32-bit or 64-bit, enumerations default to 32-bit values,
and auto usually resolves to 32-bit integers.

Both tables show more than two thirds of conditional

control flow is branches on the zero flag. This makes sense
since most conditionals are compiled from C/C++ state-
ments that check for NULL pointers, compare (i.e. sub-
tract) two values in loop headers, or use boolean expres-
sions for switch- or if-statements.

The x87 FPU is used only by legacy code, and 80-bit
floats are used only by hand crafted and specialized assem-
bly code. For best performance, 32-bit float and 64-bit
double floating point types are compiled into SSE in-
structions rather than x87 code, and therefore actual x87
instructions are almost non-existent today.

With these observations, we can now examine and un-
derstand how existing functional simulators and their exe-
cution engines work, and why they sometimes do not de-
liver the performance that they could.

3. Existing and Related Frameworks

Some frameworks focus on individual user-mode app-
lications and on instrumentation or on dynamic op-
timization through binary translation. Recent exam-
ples are Dynamo [BDB00], DynamoRIO [BGA03], and
Pin [kLCM+05]. Other frameworks focus on executing
a complete operating system stack, and thus run an entire
ISA including protected mode instructions, and do device
and memory modeling. Examples include Bochs [Boc10,
MS08], QEMU [Bel05] and Zsim [LCL+11].

Dynamo was originally developed to investigate dy-
namic optimization of single user-mode applications on
PA-RISC. It was merged with RIO and ported to Linux
and Windows on Intel’s IA32 architecture, and renamed
DynamoRIO. Using instrumentation, both frameworks de-
tect hot code and decode it to an intermediate representa-
tion, optimize the IR, then write optimized host code to a
code cache. The compiled code allocates guest values to
host registers, so entering and exiting the code cache re-
quires expensive save and restore. For applications where

entry/exit is common, save/restore overhead may be large.
Pin is an instrumentation framework for user-mode

code. Pin injects arbitrary functions, written in C/C++,
into native execution of an application. Through a well de-
fined API, instrumentation can implement tools like profil-
ers, memory leak detectors, trace generators, and so forth.
Like DynamoRIO, Pin recompiles and instruments guest
code on the fly and stores it in a code cache for execu-
tion; it also has overhead for save/restore when switching
between instrumented guest code and Pin core code.

Several other frameworks use similar techniques, in-
cluding HDTrans [SSB05], Walkabout [CLU02] and Yirr-
Ma [Jen02].

In contrast, full system simulators execute an entire op-
erating system stack. System simulators are more com-
plex, but can collect more authentic data about guest code
execution. For example, user-mode optimizers and instru-
mentation tools go to great effort to maintain control of
sandboxed applications in the face of exceptions, signals,
kernel calls, callbacks, and asynchronous interrupts. Sys-
tem simulators sit underneath the guest operating system
and can thus observe a complete picture of events and code
execution without intrusion or interception.

Bochs is a system simulator for IA32 and Intel64 archi-
tectures. It hosts various flavors of Windows, Linux, BSD,
and other operating systems built for Intel architectures.
Bochs’ core execution engine is a classical interpreter: the
decoder is table-driven and decodes a single byte at a time,
then dispatches to coarse handlers which then select the
correct implementation for the specific guest instruction.
By implementing handler functions with conditional con-
trol flow, however, Bochs introduces branch mis-prediction
stalls on almost every path that interprets guest instruc-
tions. Recent versions of Bochs use a trace cache and lazy
flag evaluation, to achieve over 100 guest MIPS.

QEMU is a binary translator which can be used as a
stand-alone application, but it also sits at the core of sys-
tem simulators and virtualizers like VirtualBox. QEMU
shares close copies of Bochs’ device model implementa-
tion. QEMU is a dynamic compiler rather than an inter-
preter and supports various guest architectures on different
hosts and a simple lazy flag implementation. Guest val-
ues are allocated to host registers, introducing save/restore
overhead when entering/exiting the code cache. Integer in-
structions execute at a 2x to 6x slowdown compared to na-
tive execution, but control flow instructions like function
calls and indirect branches may be a factor of 100x slower.

Zsim is an ISA interpreter for functional system simu-
lation. It uses binary translation to improve performance
of frequently-executed and simple-enough guest instruc-
tion sequences. It also implements a more direct dispatcher
and a form of lazy flag execution, and delivers performance

of 40 guest MIPS in interpretation mode, and 150+ guest
MIPS running compiled code.

Transmeta’s Crusoe and Efficeon processors are sys-
tem simulators [Deh03, Kep09]. They use custom VLIW
processors and dynamic binary translation. These pro-
cessors run about 1x slowdown. The translator performs
generic and host-specific optimizations, but also relies on
the host processor having transactional commit/abort and
some guest functionality, including flags, some segmented
addressing modes, endianness, and some data types.

4. The Fast Interpreter

This section describes the design and implementation
of a fast interpreter with transactional commit/abort, easy
guest retargetability, host portability, and good perfor-
mance. The ”take away” message from this section is these
goals can all be met, but doing so requires careful attention
to many seemingly-small details.

4.1. Building Blocks

A functional system simulator consists of several com-
ponents, each of which implements a model of the hard-
ware architecture being simulated. To boot an operating
system stack, the simulator requires at least the following
components:

• an execution engine for the operational semantics of
guest ISA;

• delivery of synchronous and asynchronous interrupts
and exceptions to the execution engine;

• virtual and physical addressing, guest memory protec-
tion, TLB, optional caches, and a conforming guest
memory architecture;

• device models, including at least a timer device (e.g.,
APIC) and input and output devices (e.g., a serial port
keyboard and display).

More accurate guest simulation generally means slower
guest performance. For functional simulation, the goal
is enough accuracy to run unmodified operating systems
and applications. Response latencies, signal routing, and
other hardware details are not needed. Our simulator
uses interfaces for a physical memory implementation with
store logging and a device manager for IO dispatch with a
generic device model interface, but they are not subject of
this paper.

The remainder of the paper investigates how simula-
tor design and guest ISA implementation decisions affect

guest performance. Many of the techniques apply to both
our interpreter and to other frameworks using binary or
byte-code compilation, optimization, and instrumentation.

4.2. Performance Limitations

There are different levels on which we can improve
simulation performance. [Trö04] outlines and formalizes
these. One of the most popular and researched approaches
to improve performance is dynamic compilation of guest
code into host code, called just-in-time or ”JIT” compila-
tion or dynamic binary translation. However, this approach
has pitfalls that can limit performance improvements. No-
tably, generated code quality is limited by the need to accu-
rately implement complex guest behavior on the host, and
by the need to use data layouts and code sequences that use
the processor microarchitecture efficiently.

By rethinking the implementation of the simulated guest
state and by carefully tuning the core of our interpreter, we
work with several limiting boundaries at the same time to
improve interpreter performance. Some of the same tech-
niques can also help a dynamic compiler.

4.3. Working the Constraints

As shown above, roughly twenty x86 guest instructions
make up over 60% of the dynamic instruction count of
many of today’s real world scenarios. These instructions
operate mainly on 32-bit and 64-bit integers. Call, return
and conditional branch occur every dozen or so dynamic
instructions. Code makes limited use of guest arithmetic
flags. Floating-point arithmetic is implemented using 32-
bit and 64-bit SSE.

A first performance limitation is modeling and imple-
menting guest architectural state. Figure 2 shows mem-
ory loads and stores, if cached and properly aligned, are
very cheap. That allows us to organize guest register files
as a carefully laid out data structure in memory. Do-
ing so relieves register pressure for host code, and avoids
save/restore overhead. Furthermore, aligning and structur-
ing guest state avoids penalties caused by misaligned ac-
cesses or store-forwarding stalls during member access.

A second performance limitation is modeling guest
arithmetic flags. X86 code execution produces flags with
almost every instruction, but flags are consumed rarely.
Mapping the guest’s flags to host flags may seem cheap
at first, but access to the host flags can be costly (figure 2).
Worse, host flags may vary across differing architectures,
for example ”carry” vs. ”borrow” semantics for subtrac-
tion. And, different implementations of the same architec-
ture may set ”undefined” flags differently, and some appli-
cations rely on specific behaviors for undefined flags.

It is often cheaper to use a portable implementation
based on carry-out vectors [MT10]: instead of reading host
flags after each flag producing arithmetic instruction, we
store the result of the operation and a vector of carry-out
bits, used to infer some or all guest flag values on demand,
also called ”lazy flags reconstruction”.

A third performance limitation is the main interpreter
loop and interpreter functions. A given guest instruction
rarely appears twice in sequence, so an ”obvious” decode-
and-dispatch interpreter often has high branch mispredict
penalties. As shown above, though, branch-predicted calls
and returns are very cheap. Therefore, instead of using
centralized dispatching and general instruction interpreta-
tion functions, we spread out call sites and chain together
very specialized and simple interpretation functions. We
elaborate on this below (section 4.4.3).

4.4. Implementation

4.4.1. Features

The design of our interpreter was guided by several project
constraints and feature requests:

Portability. To run on varying host architectures, the
simulator avoids assembly code. The entire framework is
written in platform-independent C/C++ only.

Atomicity. Execution and rollback of an interpreter se-
quence must be atomic and side-effect free.

Performance. Speed is one of our highest concerns.
Large Memory Support. Modern operating systems use

64-bit ISAs and large memories. Our simulator supports
32-bit and 64-bit guests. It runs on 32-bit hosts, but is op-
timized for 64-bit host architectures.

Multi-threading. Operating systems and applications
increasingly use multiple software threads and cores to im-
prove parallelism. Our interpreter should be able to imple-
ment several guest cores and assign them to multiple host
cores, thus achieving true multi-core simulation.

Virtual Time. Many system simulators, optimizers, and
virtualizers base guest time on the host timer. In con-
trast, we need our guest time to be completely decoupled
and purely virtual to implement reliable and determinis-
tic playback, and to avoid synchronization problems when
halting, debugging, instrumenting, or otherwise interfering
with guest code execution.

Instrumentation. Instrumentation is a required feature,
should come at low overhead, and should have no overhead
when disabled. Instrumentation must also be adjustable
during a simulation run; it cannot be a compile time feature
which is statically ”compiled in” on demand.

Specification-Driven ISA design for Experimentation.
To support guest ISA experimentation, an interpreter must

63 0
+-----------------------------------+
| handler index | dest | src0 |
+-----------------------------------+
| src1 | src2 | src3 |ASI|CXI |
+-----------------------------------+

Figure 5: 128-bit scode instruction.

be easy to retarget, and should use abstract interfaces to
memory, uncore, and device models so they are indepen-
dent of the guest speficiation.

Self-Modifying Code The simulator must implement
guest self-modifying code fast enough to run common
JITs, and must support device DMA that overwrites code.

We designed the interpreter around these constraints
and feature requests.

4.4.2. Scode and Traces

Our portable microcode interpreter uses a version of
threaded interpretation, based on a special interpreter vir-
tual ISA we call scode, or simulator code, and carefully-
defined interpretation functions.

The decoder is generated from an ISA encoding/decod-
ing specification [RF95]. By design, the generated decoder
accesses every field of a guest opcode only once.

A generated decoder fetches guest instructions into an
internal prefetch buffer. It then breaks individual guest in-
structions into a sequence or ”trace” of scode instructions.
Scode resembles RISC instructions, but with added at-
tributes. A decoder generates traces from individual guest
instructions and also merges multiple guest instructions
into one trace. Merging reduces outer-loop dispatch costs
and allows optimizations between guest instructions.

Many scode instructions are guest-neutral and are
reused across guests. Further, scode instructions are typ-
ically simple, so retargeting can focus on just key differ-
ences. For example, add is guest-neutral, with condition
codes modeled by a separate handler. Retargeting to new
condition code behavior thus only needs new handlers for
condition codes.

An scode instruction is represented as an aligned 128-
bit wide data structure. Not all handlers need all combi-
nations of state, so the structure is a union, to limit total
size. The most common format, shown in Figure 5, con-
sists of a unique 16-bit opcode value, one destination reg-
ister, up to three source registers, a shift or rotate count
value, an execution context identifier (for hyper-thread or
pipeline contexts). Other formats include a segment se-
lector for memory accesses, a 32-bit or 64-bit immediate
operand, and an additional immediate value or registers.

Commonly-used fields are byte-aligned for quick access at
only a slight space cost, while uncommon fields are bit-
aligned for compactness.

Scode uses a handler index rather than a pointer. Using
an index requires double indirection on every call, but lim-
its the scode size [MS94] and makes scode independent of
whether host pointers are 32-bit or 64-bit. 256 handlers is
not enough, so the handler index is 16 bits.

It is always desirable to make scode as small as possi-
ble, to minimize host cache footprint and thus scode miss
costs. However, host performance timings, above, show it
is also vital that common fields are naturally aligned for
fast access, as misaligned accesses that cross cache line or
page boundaries may be quite slow. Since the handler in-
dex is 16 bits, scode instructions must be at least 16-bit
aligned, or any savings in memory pressure is more than
than offset by the higher cost of misaligned accesses. In
practice, guest code has substantial locality, so host code
also has good locality. In our experience so far, the 128-bit
format is cached well, making fast field extraction a good
tradeoff.

The scode interpreter itself has no concept of the guest
architecture but instead interprets over an internal state of
256 64-bit general purpose integer registers, 64 64-bit gen-
eral purpose floating-point registers, and 16 predicate reg-
isters. For every actual guest architecture that we support
(e.g. x86) the interpreter also provides a mapping from
guest architectural registers to internal registers, and add-
itional implementations of the guest architecture’s special-
purpose registers. The mapping between guest and internal
state is implemented by a class derived from the internal
Core class. Figure 6 illustrates the architecture.

The interpreter’s scode instruction set is RISC-like. It
has no concept of flags or datatypes other than 32-bit or
64-bit integer and floating point. This is one of the most
fundamental design decisions, and is based on the obser-
vations outlined above, that there is very little need for any
more but these datatypes in most of today’s scenarios.

Guest arithmetic flags are implemented using a lazy
flags approach and scode instructions that compute a carry-
out vector of an operation in addition to the actual result
of an arithmetic operation. Using the result value and the
carry-out vector of an arithmetic instruction, we can derive
any other flag value on demand. This approach speeds up
retrieval and computation of guest arithmetic flags, and is
portable because it is implemented solely in C/C++, rather
than relying on custom fast assembly to compute flags or
multiplexing on top of the host condition codes.

Integer datatypes smaller than 32 bits are sign and zero
extended as needed, then operated on. The relatively small
portion of guest scenarios using smaller datatypes means
little added overhead for extension to the scode datatypes.

Internal Core

Internal
State

HandlerHandlerHandlerHandlerHandler

Derived Architectural Core

Arch.
Guest
State

HandlerHandlerHandlerHandlerHandler

Decoder
add al,1

mov eax, [edx + 4]
mov [ecx], ah

_dispatch
_post-load
_load32
check-ea
eval-ea

_pre-load
_fall_thru
_store8

check-ea
eval-ea

_fall_thru
_addco8i
_add8i

_decode

Figure 6: Internal architecture of the interpreter. Guest instructions are decoded into a trace of scode instructions, each of which is
interpreted by a handler function. The simulator implements a private Core execution engine, and a derived Core implements
further guest architectural functionality. Here, guest loads are instrumented.

4.4.3. Handler Functions

A decoded trace is committed into a trace cache, a large
buffer indexed by guest physical addresses. The high phys-
ical address bits subscript an index table, tot, and the
low 22 bits subscript a particular trace cache. Guest in-
structions are decoded on demand, so the trace cache holds
traces only for instructions actually executed.

Each scode instruction is implemented by a carefully
designed and placed interpreter function, a so-called hand-
ler. A handler is a C++ member function either of the in-
terpreter’s internal Core class or of a derived guest archi-
tectural Core class. Handlers use four register parameters:

• the this pointer provides internal and guest context
for the handler. The context data layout is aligned and
flat – it does not contain further pointers, so each con-
text access is a single load, often with an immediate
offset relative to this;

• a pointer to the aligned 128-bit scode structure with
operand values of the current instruction;

• a pointer to the Core handler table, holding function
pointers to all handlers, indexed by 16-bit opcode;

• a 64-bit operand often used as an immediate or pointer
to data that one handler passes to the next, used for
data flow internal only to the trace.

The last operand is used to decompose guest operations
efficiently into multiple handlers. For example, for a single
guest instruction, some memory addressing computations
are performed in one handler, the actual load or store is in
another, and the address is passed between them in the last

operand. This organization allows generic handlers to im-
plement many parts of the guest ISA, which reduces retar-
geting effort. It also improves dynamic code reuse, which
helps control the simulator’s instruction cache footprint.

Finally, a handler function always returns a pointer to
the next scode instruction to interpret. Using four parame-
ters per handler function is intentional, as the calling con-
vention of 64-bit host systems, both Linux and Windows,
provides for passing these parameters in registers, thus im-
proving performance.

As a general rule, handlers avoid conditional state-
ments, to minimize conditional branches which may not
predict reliably. If a guest instruction like add has dif-
ferent forms for 8, 16, 32, and 64-bit datatypes, with and
without flag recording, the decoder selects a specialized
handler based on the datatype. That is, there is no single
”add” handler that selects the correct implementation when
invoked. In addition, flags computations are handled by a
dedicated handler that consumes the results of the previous
arithmetic handler. Figure 7 illustrates the approach.

4.4.4. Atomicity

To implement atomic execution of traces, every handler ex-
ecutes in three sequential phases:

• The Operation phase prepares operands and, if neces-
sary, normalizes operand values to a 64-bit width.

• The Execution phase fetches values from the guest ex-
ecution context, computes side-effect free results, and
then calls to the next handler of the trace. Thus, calls
to the various handlers of a trace are spread out across
all handler functions of the trace.

_decodeDispatcher

_add8i _addco8i _fall-thru

eval-ea check-ea

_pre-load eval-ea check-ea _load32

0x12000

0x12002

0x12008

_dispatch
_post-load
_load32
check-ea
eval-ea
_pre-load
_fall_thru
_store8
check-ea
eval-ea
_fall_thru
_addco8i
_add8i
_decode

_store8 _fall-thru

_post-load _dispatch

Figure 7: Dispatch and Trace execution with almost perfect branch prediction. The Dispatcher invokes call chains of handler functions
as defined by the traces of scode instructions.

• Finally, Writeback saves all buffered results and other
side-effects into the internal and guest architectural
state, thus committing the handler.

Figure 8 shows a handler schematically. This handler
structure in effect implements a logging mechanism that
saves temporary values and then copies them to committed
state only once all execute actions have succeeded. How-
ever, using the call/return mechanisms instead of an ex-
plicit log makes efficient use of compiler call/return op-
timizations and processor out-of-order mechanisms. In
practice, it also allows for a simple and natural expression
of handlers without the clutter of explicit logging.

In this context, the definition ”trace” is up to the user
of the interpreter. One may choose to decode single scalar
or microcode instructions into an atomic trace of scode in-
structions, or may instead decode entire guest basic blocks.
This approach gives a handy vehicle to experiment with
transactional memory.

4.4.5. Handler Chaining

One of the most performance-critical paths is the inter-
preter’s core loop. Most interpreters use a centralized
dispatcher that causes a host’s branch predictor to mis-
predict almost every time it calls an interpretation func-
tion [EG03]. To avoid this penalty, our interpreter call-
chains handlers in a trace, and, if possible, also chains con-
secutive traces. Each handler computes the next one by
simply incrementing its own scode pointer (2nd operand),
then fetching the new address from the handler function ta-
ble (3rd operand) by indexing into it using the next scode’s
opcode. The new handler is then called directly.

This structure improves interpreter dispatch prediction

by spreading branches over many call sites. This makes
each call site much more predictable and also gives more
information to the host’s branch predictor. Using call/re-
turn structure for handling also takes advantage of host pro-
cessor call/return prediction. In addition, the hottest hand-
lers often stay in the host instruction cache for a long time.
Although this handler structure may at first seem unintu-
itive, it avoids mispredicted branches, where the cost of a
single mispredicted branch is sometimes more than the to-
tal cost of a handler.

Traces always either return for commit, or exit via
longjmp() for abort, thus avoiding indefinite growth of
the interpreter’s call stack.

4.4.6. Dispatch and Interpretation

The main loop of the core interpreter is different than most
interpreters: instead of doing decode and dispatch, the loop
calls via a ”global actions” pointer which is usually a func-
tion that returns its handler argument, but which may be
updated by handlers, for example to handle interrupts. Af-
ter global actions, the dispatcher simply calls the current
trace. Figure 9 shows the main loop schematically.

Initially, the trace cache is zeroed. Given a guest in-
struction pointer, dispatch finds only a ”zero scode instruc-
tion” which is the ”Decode” scode instruction, and thus
calls the decoder.

The Decode handler is just an ordinary handler. The
Execute phase fetches the instruction from guest memory,
decodes it and breaks it up into an scode trace, which it
then stores into the trace cache. During Writeback, the De-
code handler calls the new trace, and on Writeback the new
trace returns to the Decode handler with a pointer to the

handler_t *schematic_handler(context, hdlr_table, 128b_struct, arg) {
Operate:

next = 128b_struct+1
next_handler = hdlr_table[next.handler_index]
...

Execute:
...
successor = (*next_handler)(context, hdlr_table, next, arg)

Writeback:
...
return successor

}

Figure 8: Schematic scode handler.

mainloop(...) {
setjmp(... for exceptions ...)
128b = tot[paddr:42..22].table[paddr:21..0]

loop:
128b = (*global_actions)(..., 128b, ...)
next = hdlr_table[128b.handler_index]
128b = (*h)(context, hdlr_table, 128b, 0)

}

Figure 9: Schematic main loop.

next microcode instruction in the trace cache. When De-
code returns to the dispatcher, the dispatcher calls the hand-
ler function of that returned microcode instruction, without
further lookup.

Aside from Decode, the interpreter is independent of
the guest ISA. This allows construction of hybrid ISAs.
For example, modern x86 processors use a combination of
fixed logic for simple instructions and wide microcoded
instructions for complex instructions. Wherever a com-
plex guest instruction appears, the decoder can emit scode
traces of the microcode, allowing design, measurement,
and validation of microcode in the context of a full system.

Every trace is terminated by a TraceEnd handler that in-
crements the guest program counter, advances guest time,
increments its own scode instruction pointer and returns to
the caller, which executes its Writeback phase and returns
to its caller. The call stack unwind repeats until the dis-
patcher is reached. Due to host call/return hardware, the
returns have perfect branch prediction.

Handlers that implement guest control flow modify their
return value during Writeback. The return value is com-
puted with a very fast table lookup, which, in contrast
to traditional hashing techniques, operates over flattened
sparse dispatch tables that map guest physical instruction

pointers to an internal trace cache index. Figure 7 illus-
trates trace dispatching.

Some simple trap/fault cases are placed at the beginning
of the trace, and simply return the handler for the trap/fault.
More complex cases perform a C longjmp() to unwind
back to the main loop. This adds 100 or more cycles in the
case of taken traps/faults, but means zero overhead for the
common case of no trap/fault. This structure also allows
use of host faults, again unwinding to the main loop. Using
host faults can be cheaper than testing explicitly in hand-
lers. In either case, up to the occurrence of a fault or the
end of a trace, no architectural guest state is committed, so
the trace appears to commit or rollback atomically.

Traces are edited dynamically to implement guest self-
modifying code, DMA that writes code, and demand pag-
ing that overwrites old code with new code. The first scode
in a trace is overwritten with zero, so on reexecution the
simulator will decode and execute the new guest code.

Trace editing could be used to implement VLIW ”restart
under mask”, where functional units are selectively dis-
abled after exceptions: handlers for disabled actions
would be NOP’d and the 0’th scode set to ”Decode”, or
global actions could restore NOP’d scodes.

Traces are also edited dynamically to implement some

simulator controls. For example, tracing uses TRACE
scodes in a trace, and tracing is disabled quickly and selec-
tively by overwriting a TRACE scode with a NOP scode,
or by removing TRACE scodes.

Note, in contrast, writing host code means evicting code
from the host’s instruction cache then re-fetching the mod-
ified code from the host’s data cache. Further, dynamic
translators often regenerate translations instead of patching
them. These costs limit where translators can use patching.

4.4.7. Debugging and Instrumentation

To simplify debugging and to improve performance, the in-
terpreter itself does not allocate memory dynamically. All
resources are acquired before the interpreter enters its main
execution loop, to prevent runtime failures and to save al-
location overhead. The simulator allocates some very large
tables that are used sparsely but in ”dense clumps”, for
example, the large flat dispatch table. Although much of
these tables may go unused, they have essentially zero
overhead and are managed efficiently by the host virtual
memory system.

On Windows hosts we have implemented a debug ex-
tension for the Windows kernel debugger. The debugger
can attach to a running simulator process in a non-invasive
way, and the debug extension allows us to inspect and ma-
nipulate a simulated guest transparently, just as it does with
the actual host architecture.

Low overhead instrumentation is a runtime feature, im-
plemented by injecting dedicated handler functions arbi-
trarily into a trace. To provide maximum flexibility, the in-
terpreter can invoke callback functions from within a trace
through a dedicated Hook scode instruction. This approach
allows us to enable and disable instrumentation dynami-
cally without recompiling the interpreter code and without
paying a penalty for dummy instrumentation hooks.

5. Initial Results and Future Work

After more than two programmer-years of design and
development, our fast interpreter is currently in its initial
deployment. It is a linkable library with an SDK, so cus-
tomers can write various tools that integrate the interpreter
into existing functional simulation frameworks. We have
disclosed source code and the SDK to Intel internal cus-
tomers like the Simics and Zsim teams, and we are also
working on our own simulator infrastructure.

The interpreter has been partly retargeted to several
guest instruction sets, example an experimental 64-bit
microcode architecture as well as IA32, thus demonstrating
easy retargatability. We are not quite able to boot an entire

guest operating system stack, but initial results show im-
proved performance compared to full-system interpreters.

The simulator provides a scalable number of internal
cores for (currently un-synchronized) multi-core guests,
a linear guest physical address space with store logging
for transactional memory; and a device manager and first
generic device models and interfaces. Guest virtual mem-
ory support is implemented via the derived guest architec-
ture Core class, as are TLB and optional caches.

The entire interpreter SDK compiles and runs on Win-
dows, Linux, and MacOS X on both 32-bit and 64-bit
hosts.

The scode interpreter supports arithmetic, logic, and
shift and rotate instructions with automatic integer datatype
widening, lazy flags, conditional and unconditional control
flow, a complete segmented load-store architecture with
TLB and store logging, synchronous and asynchronous ex-
ceptions and interrupts, IOIO and MMIO instructions and
device model interfaces, and instrumentation of the inter-
preted scode instruction traces.

Table 10 shows performance numbers for some iso-
lated benchmarks, listing the number of individual scode
instructions and traces (i.e. guest instructions) executed
by each benchmark, the execution time, and the number
of scode instructions and traces retired per second. The
benchmarks were compiled with off-the-shelf VisualStu-
dio and gcc compilers, and measured on a 3.0GHz Xeon
running 64-bit Windows7.

The first test is a simple HelloWorld program, and the
second and third tests implement various loops that format
and print out text and numbers. The two arithmetic tests are
loops over pure integer arithmetic. We experimented with
different trace lengths: longer traces execute faster, with
the reduction in scode instructions due to fewer TraceEnd
handlers. The last test implements a LaPlace transforma-
tion of a 120x80 image.

Table 11 shows performance of a few micro-
benchmarks. Here, the interpreter ran on a 3.4GHz Sandy
Bridge machine under 64-bit Windows7. The first two
NOP benchmarks merge four guest NOP instructions into
a single trace vs. running the NOPs individually. Again,
increased trace length improves runtime performance mea-
surably. Executing over 300 million NOP handlers per sec-
ond demonstrates the efficiency of our core interpreter en-
gine. The next two ADD benchmarks show the overhead of
arithmetic flags. Even though the lazy flag implementation
is faster than reading host flags, it still incurs significant
overhead. The last two benchmarks measure guest load/s-
tore performance, where a single memory access is broken
into as many as six scode instructions.

In all tests the interpreter dispatches at least 127 mil-
lion scode handlers per second, with a peak of 307 million

Runtime Scode Insn (MSPS) Guest Insn (MIPS)
Simple HelloWorld 14 ms 2,100,216 (150) 526,807 (38)
printf Loop 44,571 ms 5,670,027,272 (127) 4,830,023,516 (108)
Nested Integer Loop 9,196 ms 1,471,248,646 (159) 1,260,650,284 (137)
Pure Integer Arith 1 3,022 ms 629,145,610 (208) 209,715,205 (69)
Pure Integer Arith 2 2,233 ms 524,288,009 (234) 209,715,206 (94)
LaPlace Transform 5 ms 744,207 (148) 400,272 (80)

Figure 10: Initial results of test benchmarks. The first column shows the test runtime, the second column the number of scode instructions
executed, and the third column the number of guest instructions executed.

Runtime Scode Insn (MSPS) Guest Insn (MIPS)
Merged NOP 844.6 ms 260,000,006 (307.85) 190,000,004 (224.97)
NOP 1,787.0 ms 380,000,006 (212.66) 190,000,004 (106.33)
ADD/32 1,326.9 ms 300,000,006 (226.10) 190,000,004 (143.20)
ADD/32 flags 2,312.2 ms 540,000,006 (233.54) 190,000,004 (82.17)
MOV phys 5,032.6 ms 1,140,000,006 (226.52) 190,000,004 (37.75)
MOV TLB 8,525.8 ms 1,140,000,006 (133.71) 190,000,004 (22.29)

Figure 11: Guest micro-benchmarks shows how guest instructions can be merged into single traces (Merged NOP vs. NOP); how com-
puting flags incurs additional runtime (ADD tests); and how complex guest instructions are broken into several sometimes
expensive handlers (MOV tests).

when the scode is simple enough and when trace length
is increased. Depending on the complexity of the guest
instructions this results in 22 to 225 million guest instruc-
tions per second, where a single guest instruction maps to
a trace of scode instructions. These numbers demonstrate
the importance of designing the critical paths of the inter-
preter around the host architecture’s features.

We are currently still in initial deployment, and are well
on the way to boot an entire operating system stack, with
necessary internal and architectural handlers, fully con-
nected device models for the guest, and accurate virtual
timers for checkpoint and deterministic replay.

Summary

In this paper we identified and evaluated real-world
workloads and micro-benchmarks, and introduced the de-
sign and implementation of a fast interpreter for functional
architecture simulation.

In the first part of the paper we describe real-world
workloads, software scenarios that average customers of
laptop and desktop computers run today. These scenar-
ios involve executing an operating system stack like Win-
dows7 or Linux, and running several applications simulta-
neously. Investigating these scenarios shows that around
60% of the dynamic instruction count consist of only 15
to 20 different instructions, mainly loads and stores, condi-
tional control flow and function calls and returns, and ba-

sic integer arithmetic. Some of these common instructions,
however, can be expensive to run if simulated naively.

We then introduce the design and implementation of our
portable and fast interpreter. The interpreter gains its per-
formance by

• aligning and flattening critical data structures such as
execution context, dispatch tables, and scode traces;

• separating guest and host execution contexts to avoid
context switches;

• spreading out call sites across handlers;

• avoiding conditional control flow inside of handlers;

• avoiding high-latency host instructions on critical
paths; and

• passing context information to handler functions in
registers

We gain further improvements through host-independent
lazy flags for guest arithmetic flags, and handler execu-
tion in phases for atomic trace commit, rollback, and fast
exception handling. Our interpreter supports retargeting
through specification-driven instruction decode and guest-
independent handlers that can be used as building blocks.
It currently runs on 32-bit and 64-bit Windows, Linux, and
MacOS X hosts. Initial results show it dispatches 130 to
300 million handler functions per second and 20 to 220
million guest instructions per second, thus exceeding the
performance of comparable frameworks.

References

[BDB00] Vasanth Bala, Evelyn Duesterwald, and San-
jeev Banerjia. Dynamo: a Transparent Dy-
namic Optimization System. In PLDI: Pro-
ceedings of the ACM SIGPLAN Conference
on Programming Language Design and Im-
plementation, 2000.

[Bel05] Fabrice Bellard. QEMU, a Fast and Portable
Dynamic Translator. In USENIX Annual
Technical Conference, 2005.

[BGA03] Derek Bruening, Timothy Garnett, and
Saman Amarasinghe. An Infrastructure for
Adaptive Dynamic Optimization. In CGO:
International Symposium on Code Genera-
tion and Optimization, 2003.

[Boc10] Bochs. Bochs. Open Source Community
Software, 2010.

[CLU02] Cristina Cifuentes, Brian Lewis, and David
Ung. Walkabout - A Retargetable Dy-
namic Binary Translation Framework. Tech-
nical Report TR-2002-106, Sun Microsys-
tems Laboratories, 2002.

[Cor10] Standard Performance Evaluation Corpo-
ration. The SPEC Benchmark Suite.
http://www.spec.org/, 1988-2010.

[Deh03] Jim Dehnert. Transmeta Crusoe and Ef-
ficeon: Embedded VLIW as a CISC Imple-
mentation. In SCOPES: 7th International
Workshop on Software and Compilers for
Embedded Systems, 2003.

[EG03] M. Anton Ertl and David Gregg. The
structure and performance of efficient inter-
preters. Journal of Instruction-Level Paral-
lelism, (5):1–25, 2003.

[Jen02] Jens Tröger and John Gough. Fast Dynamic
Binary Translation – The Yirr-Ma Frame-
work. In Workshop on Binary Translation,
2002.

[Kep09] David Keppel. Transmeta Crusoe Hardware,
Software, and Development. In ISCA/AMAS-
BT: 2nd Workshop on Architectural and Mi-
croarchitectural Support for Binary Transla-
tion, 2009.

[kLCM+05] Chi keung Luk, Robert Cohn, Robert
Muth, Harish Patil, Artur Klauser, Geoff

Lowney, Steven Wallace, Vijay Janapa, and
Reddi Kim Hazelwood. Pin: Building cus-
tomized program analysis tools with dy-
namic instrumentation. In In Programming
Language Design and Implementation, 2005.

[LCL+11] Yair Lifshitz, Robert Cohn, Inbal Livni,
Omer Tabach, Mark Charney, and Kim
Hazelwood. Zsim: A Fast Architectural Sim-
ulator for ISA Design-Space Exploration.
In CGO: International Symposium on Code
Generation and Optimization, 2011.

[MS94] Peter S. Magnusson and David Samuelsson.
A compact intermediate format for simics.
Technical Report R94:17, Swedish Institute
of Computer Science, 1994.

[MS08] Darek Mihočka and Stanislav Shwartsman.
Virtualization without Direct Execution or
Jitting: Designing a Portable Virtual Ma-
chine Infrastructure. In ISCA/AMAS-BT:
1st Workshop on Architectural and Microar-
chitectural Support for Binary Translation,
2008.

[MT10] Darek Mihočka and Jens Tröger. A Proposal
for Hardware-Assisted Arithmetic Overflow
Detection for Array and Bitfield Operations.
In CGO/WISH: Workshop on Infrastructures
for Software/Hardware co-design, Toronto,
April 2010.

[RF95] Norman Ramsey and Mary F. Fernandez.
The New Jersey Machine-Code Toolkit,
1995.

[SSB05] Swaroop Sridhar, Jonathan S. Shapiro, and
Prashanth P. Bungale. HDTrans: A Low-
Overhead Dynamic Translator. In In Pro-
ceedings of the 2005 Workshop on Binary In-
strumentation and Applications, IEEE Com-
puter Society, 2005.

[Trö04] Jens Tröger. Specification-Driven Dynamic
Binary Translation. PhD thesis, Queensland
University of Technology, 2004.

