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Summary 

The issue of high level language support is 
treated in a systematic top-down manner. Program 
representations are categorized into three classes 
with respect to a host processor: high level 
representations, directly interpretable represen- 
tations and directly executable representations. 
The space of intermediate languages for high level 
language support is explored and it is shown that 
whereas the ideal intermediate language from the 
point of view of execution time is a directly 
executable one, the best candidate from the view- 
point of memory requirements is a heavily encoded 
directly interpretable representation. The con- 
cept of dynamic translation is advanced as a means 
for achieving both goals simultaneously; the pro- 
gram is present in the memory in a compact static 
representation, but its working set is maintained 
in a dynamic representation which minimizes 
execution time. The architecture and organization 
of a universal host machine, incorporating this 
strategy, is outlined and the potential perfor- 
mance gains due to dynamic translation are studied. 

I. Introduction 

I.I. Micropro$ramming and Interpretation 

Microprogranmaing was originally conceived by 
Wilkes as a systematic means of implementing the 
control structure of a computer I. The micro- 
program, embedded in a read-only memory, inter- 
prets the instruction set visible to the 
programmer. In view of the permanence of the 
microprogram and its transparency to the user, the 
interpreted instruction set was, reasonable 
enough, thought of as representing the architec- 
ture of the machine. Accordingly, the emphasis 
was on the interpreted instruction set. 

With the advent of writeable control store, 
the situation has changed and, yet, the perspec- 
tive has remained much the same. Writeable 
control store is viewed as a means of providing 
a "soft architecture," i.e., one that can be 
changed dynamically to match the needs of the 
moment which might, for instance, entail the sup- 
port of a high level language. Experience with 
the Burroughs B17002, 3 and the work of Hoevel 4 
has demonstrated the effectiveness of such a 
strategy. However, the emphasis still is on the 
interpreted instruction set. An artificial line 

is drawn upon which lies the conventional machine 
language. On one side of this line is the domain 
of high level languages, compilers, interpreters 
and main memory. On the other side lie the micro- 
programs, nanoprograms, emulators and a host of 
other micro- and nano- entities. This viewpoint 
arises, in part, from the use of microprogrammable 
machines predominantly for the purpose of emulat- 
ing the instruction sets of other machines. This 
classical concept of microprogramming tends to 
obfuscate the issue which may be phrased as fol- 
lows: given a certain (open ended) set of high 
level languages, what is the nature of the host 
hardware that is best suited to supporting them 
and what is the process by which programs, written 
in these high level languages, are supported? A 
fresh perspective can be valuable; the host 
machine should be viewed as a special purpose 
machine designed to provide high level language 
support. The architecture and organization should 
evolve as the outcome of a top-down design process 
rather than as a carry-over from the classical 
view of microprogramming. This is the objective 
of this paper and so as to avoid any preconceived 
notions, the terminology of microprogramming is 
avoided as far as is possible. 

The architecture and instruction set of a 
host is determined by the class of languages that 
are to be supported by it. If this class is 
restricted and consists of similar languages, the 
application of the host is fairly specific and 
the instruction set will contain powerful instruc- 
tions which closely resemble the semantics of the 
high-level languages that are supported by the 
host. Several examples of high-level machine 
designs fall into this category 5-I0. On the other 
hand, if the class of languages is large and 
vague, commonality of semantics will exist only 
at a very low level and the instruction set of the 
host machine will be primitive. This provides 
generality and flexibility. A host of this type 
is termed a universal host machine (UHM). A 
number of examples of UHM's are available2, II-14. 

Given a host architecture and a high level 
language, one could either interpret the latter 
directly, compile it into the machine language or 
compile it into an intermediate language which is 
then interpreted. Hoevel derives conditions 
under which the last alternative is superior to 
the other two 15. These conditions are generally 
satisfied for the types of universal host archi- 
tectures that exist or are under consideration. 
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The nature of this intermediate level is treated 
in some detail by Hoevel and Flynn 16. The only 
true machine language involved is that of the 
host. However, to avoid confusion with the inter- 
preted instruction set, which is traditionally 
viewed as being the machine language, the host's 
instruction set will be referred to as the host 
machine language. 

1.2. Overview 

This paper is an attempt to approach the 
problem of high level language support in a sys- 
tematic manner. The basic assumptions are that, 
in the future, most programs will be written in a 
high level language, and that the number and var- 
iety of languages will not be constrained. In 
such an environment, the effectiveness of an 
architecture is judged not by the performance 
achieved with a particular language but by the 
performance over the spectrum of languages. 
Accordingly, the focus is on the architecture of 
universal host machines and the nature of the 
intermediate level language. It is worth empha- 
sizing that the universal host machine is not seen 
as providing a faster way to interpret a single 
language such as the System/360. A specialized 
architecture will obviously perform better. The 
universal host machine is effective when the 
objective is to support a large number of lan- 
guages with equal facility. 

A top-down treatment must begin by identify- 
ing and evaluating the various representations of 
programs. In Section 2, three levels are defined: 
high level representations, directly interpretable 
representations and directly executable represen- 
tations. Section 3 considers the space of inter- 
mediate representations into which a high level 
representation may be compiled. This space is 
shown to have two dimensions: semantic level and 
the degree of encoding. It is shown that the 
ideal intermediate representation varies depending 
on whether importance is attached more to the 
speed of interpretation or to the compactness of 
the representation. Section 4 introduces dynamic 
translation as a means of achieving the two goals 
simultaneously. The program is stored statically 
in the compact representation, but its working 
set is translated dynamically into the represen- 
tation suitable for speedy interpretation. On 
the basis of the "principle of locality" it is 
possible for just a small fraction of the program 
to be in the dynamic representation and yet to 
find that the majority of instructions that are 
executed are in the dynamic representation. This 
dynamic representation of the working set is main- 
tained in a dynamic translation buffer, the organ- 
ization and management of which is outlined in 
Section 5. Section 6 discusses the architecture 
of a universal host machine incorporating a 
dynamic translation buffer. Finally, Section 7 
attempts to evaluate the effectiveness of the 
dynamic translation buffer. 

2. Levels of Representation of Programs 

Central to the discussion of the various 

levels of representation of programs is the con- 
cept of binding. We follow Radinl7 in defining 
a program to be bound with respect to a given 
automaton if the automaton is able to execute this 
program correctly. If the automaton is unable to 
execute the program due to lack of information 
regarding the syntax and semantics of the program 
and data structures, then the program is unbound 
in those aspects with respect to the automaton. 
Binding is the process of supplying the missing 
information by augmenting or modifying the program 
so that the resulting program representation is 
bound with respect to the automaton. 

The level of a program representation may be 
studied by examining the (virtual) machine to 
which it is bound. Higher level representations 
are bound to machines that are semantically more 
powerful. Although the levels of representation 
may vary over a wide range, three broad categories 
have particular significance in the context of 
high level language support: 

2.1. Directly Executable Representations 

Assuming that the universal host machine is 
specified, one may immediately define the lowest 
level; a directly executable representation, 
(DER), is one which is bound with respect to the 
architecture of the universal host machine. This 
is a well defined level since it is possible to 
test whether a program representation falls into 
this category by attempting to execute it on the 
universal host machine. However, as will be seen 
subsequently, it is possible to specify more than 
one DER for a program. 

2.2. High-Level Representations 

At the other end of the spectrum is the high- 
level representation, (HLR). A HLR is one written 
in a hi~ level language, a precise definition of 
which is difficult. It is more profitable to 
describe a HLR by its characterizing properties. 
Of relevance are those properties which affect 
the ease with which a HLR may be interpreted. 
These properties are best studied by describing 
the virtual machine to which the HLR is bound. 
Such a machine has: 

I. an associative memory to allow a variable 
reference to be associated with the variable 
declaration statement which specifies the mapping 
to type and value. Similarly, an explicit trans- 
fer of control to a procedure or label requires 
an association with the procedure declaration or 
labelled statement; 

2. a mechanism which qualifies the above associ- 
ation based on the scope rules of a language such 
as ALGOL 18 or APLI9; 

3. a scanning mechanism which can match BEGIN's 
and END"s in a block structured language. Such 
a mechanism is needed to skip over nested blocks 
which are not to be executed, e.g., in a CASE 
statement; 
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4. the ability to parse statements generated by a 
recursive grammar; 

5. The ability to evaluate expressions in paren- 
thesized infix notation obeying rules of 
precedence; 

6. the ability to handle symbolic names of 
arbitrary length. 

These features are designed into high level 
languages so as to aid the programmer in expres- 
sing the algorithm. They also complicate the 
task of the interpreter immensely. As a result, 
the idea of building hardware to directly 
interpret a HLR is unattractive and even so- 
called high-level language machines invariably 
translate the HLR to some other internal 
representation. 

2.3. Directly Interpretable Representations 

The purpose of compilation is to translate 
the HLR into a representation that is devoid of 
the problems that arise in directly interpreting 
a HLR. This representation should be bound to 
a virtual machine that more closely resembles the 
host than does the HLR's virtual machine. In 
particu~ r: 

I. the representation should be bound to a 
directly addressed memory; 

2. variables and labels should be bound to memory 
locations to the extent permitted by the HLR; 

3. the hierarchical, block structure of the HLR 
should be replaced by the familiar sequential 
form with explicit branches around code which is 
not to be executed; 

4. the syntax should be context-insensitive and 
relatively simple; 

5. expressions should be decomposed into a non- 
hierarchical form, preferably reverse Polish 
notation; 

6. the size of operand and operation specifi- 
cations should belong to a small, well-defined 
set of possibilities. 

The resulting representation allows for a faster 
and more efficient interpreter. It also does not 
require a preliminary scan (to set up symbol 
tables and resolve forward references) before the 
program can be interpreted. Such a representation 
is termed a directly interpretabl ~ representation 
(DIR). The class of DER's is a special subset of 
the class of DIR's. Programs written in con- 
ventional machine languages, the S-languages of 
the BI7003 and DELTRAN 4 are examples of DIR's. 

3. The Space of Intermediate Representations 

The intermediate representation that results 
from compiling a HLR could assume any number of 
forms. From the point of view of the speed of 

interpretation and the size of the represen- 
tation, the space of intermediate representations 
may be parameterized in two-dimensions -- the 
semantic level and the degree of encoding. 

3.1. One Dimension: The Semantic Level 

The representation of lowest semantic level 
is obtained by compiling down directly to the 
host machine language. Such a DER is termed an 
S-DER. Since any computation performed by the 
host must eventually be performed in the host 
machine language, the S-DER might be expected to 
provide the shortest possible execution time in 
a host machine which has a single level of memory. 

The manner in which compilers generate code 
(by substituting similar sequences of code for 
occurrences of the same terminal symbol) may be 
exploited by replacing every such sequence by a 
call to a generalized procedure which performs 
the same function. The arguements of the call 
are included in-line. The resulting procedurally 
structured DER is termed a P-DER. While being 
considerable more compact than an S-DER, the 
speed of execution of the P-DER suffers from 
having to pass parameters and from the loss of 
the local optimization based on context that must 
be sacrificed when using a procedure. The 
procedure calls are logically equivalent to more 
powerful opcodes and, so, the semantic level of 
the P-DER is higher than that of the S-DER. 
Nevertheless, the P-DER remains directly execut- 
able, the binding being performed explicitly via 
the procedure calls. The semantic level of the 
P-DER is determined by the functional complexity 
of the semantic routines. 

Further economy of size may be achieved by 
combining sequences of P-DER procedure calls into 
single calls to procedures that perform the same 
function as the sequence of calls. Clearly, the 
inclusion of every possible sequence (of a given 
length) does little to compact the program 
representation and leads to a combinatorial 
increase in the number of semantic routines. 
Consequently, such a scheme, to be successful, 
must discard all but a selected set of sequences 
which are then combined. The resulting represen- 
tation is constrained by this selection and is 
termed a C-DER. Unless the selection of the C-DER 
procedures is undertaken carefully, the loss of 
semantic flexibility manifests itself in the 
inefficient generation of code by the compiler 
and a resultant increase in execution time. The 
C-DER is logically equivalent to a representation 
in a machine language with a limited choice of 
instruction formats, e.g., a three-address format 
alone. 

3.2. The Other Dimension: The Desree of Encoding 

Every DIR which is not a DER ~y be viewed as 
being an encoded form of a DER. The simplest 
form of encoding is obtained with a P-DER consist- 
ing solely of procedure calls and no other host 
machine language instructions in-line. In such a 
P-DER the opcode portion of the procedure call is 
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redundant and may be discarded. The new represen- 
tation consists of the addresses of the semantic 
routines followed by the arguements of the call. 
Such a representation has been termed "threaded 
code" by Bell 20. The address of a semantic 
routine along with the arguements to the call 
form an instruction in the new representation with 
the address of the routine assuming the role of 
an opcode. The reduction in program size is 
accompanied by a significant disadvantage. The 
representation is no longer a DER but rather a 
DIR. The DIR must be interpreted by an inter- 
preter which increases the execution time. (In 
Bell's threaded code, the interpreter consists 
of code in each semantic routine which increments 
the DIR program counter past the arguements and a 
final branch to the location pointed to indirectly 
by the DIR program counter). 

Further code compaction is achieved by select- 
ing the sizes of the DIR's opcode and arguement 
fields independently of the size of the smallest 
unit of memory access (e.g., a word or byte). The 
instruction fields are packed together with fields 
being allowed to overlap access boundaries or 
with multiple fields in one access unit. Most 
conventional machine languages fall into this 
category. The price paid is that the interpreter 
must extract these fields before performing the 
semantics of the DIR instruction. 

An encoding based on contextual information 
may be used to reduce the size of each field. For 
instance, the scope rules of a high level language 
limit the number of variables that may be refer- 
enced from within a given contour 21. The operand 
specification field need be no larger than 
necessary to select between these variables. This 
technique has been used in DELTRAN 4. 

A more sophisticated Huffman encoding 22, 
based on the static frequencies of occurrence of 
the operators and operands, leads to further 
economics in program size, often up to 75% 
reductions in size3, 23-25. A compromise between 
decoding time and encoding efficiency may be 
achieved by limiting field sizes to a small number 
of alternatives 3. This frequency based encoding 
scheme may be generalized by considering the 
frequency of occurrence of pair, triples, etc., 
23-z5, and may be combined with contour-based 
encoding scheme. The S-languages of the BI700 
are examples of the successful application of 
frequency based encoding techniques. 

3.3. Comparison of Intermediate Representations 

If the host machine possesses only a single 
level of directly addressable memory, the space/ 
time trade-offs are straightforward; an increase 
in the semantic level or in the degree of encoding 
generally decreases the size of the intermediate 
representation but increases the time needed to 
execute or interpret it. The fastest and least 
compact representation is the S-DER obtained by 
directly compiling into the host machine language. 

The presence of a memory hierarchy leads to 
more interesting trade-offs. A P-DER or DIR 
partitions the memory space into two parts -- 
that consisting of the P-DER calls or DIR instruc- 
tions and that consisting of the semantic routines 
and the interpreter. Each reference to the former 
part generates a large number of references to the 
latter ]part, which thus becomes a prime candidate 
for placement in the faster portion of the memory 
hierarchy. The average memory access time is 
reduced as compared to the average memory access 
time using an S-DER. Thus the use of a P-DER or 
DIR is beneficial both in space and in time and a 
well designed host machine must possess a memory 
hierarchy to capitalize on this property. In 
fact, all microprogrammable machines possess st 
least two levels -- control store and main 
memory -- which explains, in part, why traditional 
microprogrammable machines and universal host 
machines sre equated. 

The space of intermediate representations 
may be graphically represented as in Figure I. 
The vertical dimension is s measure of the syn- 
tactic and semantic complexity of the represen- 
tation. The horizontal dimension specifies the 
complexity of the encoding. A point in the space 
denotes a representation. In general, the size 
of a program decreases with increasing distance 
of the representation from the origin, but the 
size of the interpreter and semantic routines 
increases although by a smaller extent. Assuming 
a two-level memory hierarchy, the interpretation 
time may be expected to decrease in the vertical 
direction with increasing level. At the same 
time, the compile time will decrease since it, 
presumably, is easier to compile into a higher 
level intermediate level than it is to compile 
into one which is greatly removed from the HLR. 
As one moves to the right, both interpretation and 
compilation time may be expected to increase. The 
increase in compilation time is caused by having 
to compile first into an unencoded form followed 
by an encoding step. 

If one is concerned only with the size of the 
intermediate representation and the interpretation 
time, the former consideration would indicate the 
use of a highly encoded DIR of s level as high as 
can be tolerated from the point of view of inter- 
preter size. The latter consideration would 
indicate the use of a P-DER, once again of as high 
s level as the size of the semantic routines will 
permit. The size of the semantic routines and 
interpreter is important since they must fit into 
the faster, smaller levels of the hierarchy if 
high speed interpretation is to be achieved. In 
the next section, a method of simultaneously 
fulfilling these contradictory requirements of 
high speed interpretation and a compact inter- 
mediate representation of the program, is 
presented. 

4. Dynamic Translation of Program Representations 

A characterizing property of a compiler is 
that whatever binding it does persists over the 
entire ]period of execution of the program. The 

70 



interpreter must complete whatever binding remains. 
However, this binding persists only over the 
period of execution of an instruction and must be 
repeated each time that instruction is executed. 
From the point of view of persistence of bindings 
the compiler and interpreter are at opposite 
extremes. We introduce the notion of a dynamic 
translator, the persistence of whose binding lies 
in between that of the compiler and the inter- 
preter. Once the dynamic translator binds an 
instruction (totally or partially), it remains 
bound over a period of time that spans a certain 
number of successive executions of that instruc- 
tion. Such a strategy assumes, of course, that 
the program is not self-modifying -- an assumption 
that is valid when programs are written in high- 
level languages. 

One could conceive of a hierarchy of repre- 
sentations each with a different level of binding 
and degree of persistence: the source program 
which exists until destroyed, the DIR which lasts 
until the source is modified, the link-edited 
version which exists for one execution of the 
program, possibly a number of lower levels, each 
increasingly bound and persisting for decreasing 
fractions of the program execution period and, 
finally, a completely bound representation of an 
instruction which only lasts for the duration of 
that instruction's execution. 

The significance of the dynamic translator is 
that it raises the possibility of simultaneously 
achieving high speed interpretation and a compact 
static intermediate representation. Since the 
binding performed by a dynamic translator persists 
over a number of executions of an instruction, 
the time spent in binding is spread out over those 
instructions, thereby reducing the average time 
spent in binding per instruction executed. It is 
possible then to use a highly encoded DIR without 
increasing the interpretation time by very much 
if the binding is made to persist over a suffici- 
ent number of successive executions of the same 
instruction. This persistence of binding is 
effected by saving the bound representation of the 
instruction which w~ll be less compact than the 
encoded DIR version. Attempting to retain this 
bound version for extended periods of time for a 
number of different instructions will entail the 
use of large amounts of memory. In fact, if 
the bound version were never discarded, one would 
soon obtain and have to provide storage for a 
translated version of the entire program, thereby 
defeating the purpose of using an encoded DIR. 

The effectiveness of the dynamic translator 
hinges on the ability to save the bound represen- 
tation for just a short period of time which, 
nevertheless, spans a large number of executions 
of the instruction. The existence of loops and 
recursive calls implies this ability. In fact, 
the more general "principle of locality" states 
that over any interval of time, the vast majority 
of memory references are concentrated on a small 
subset of the address space. This principle has 
been empirically validated over and again 26"28 
and is the fundamental justification for the 

existence of cache memories 28-30 and virtual 
memories.31, 32 The fraction of the address space 
that is currently being referenced heavily is 
termed the working set. 27 The function of the 
dynamic translator is to maintain in the dynamic 
translation buffer (DTB) a representation of the 
instruction working set that is more tightly bound 
than the static representation. If the size of 
the DTB is reasonably large and if the contents 
of the DTB are selected carefully, it is possible 
to ensure that a large fraction of all instructions 
executed will be present in the DTB. This fraction 
is termed the hit ratio. When the hit ratio is 
close to unity, most instructions when executed 
will be found in the more tightly bound representa- 
tion. The time penalty associated with binding 
will be experienced only rarely and will not be a 
major factor in determining the execution time. 
If, at the same time, the size of the DTB is small 
in comparison to the size of the loosely bound 
representation, the memory requirements will not 
have been increased substantially and the con- 
flicting requirements of a compact representation 
and low execution time will be met simultaneously. 

The concept of a DTB is related to that of the 
dynamic address translation mechanism provided 
with virtual memories. When addressing a virtual 
memory, the virtual address must be bound to a 
physical address. This involves indirection 
through one or more segment and page tables on 
each memory reference. This overhead is reduced by 
retaining in an associative array the mapping 
between the virtual and physical addresses for the 
pages which have been referenced most recently. 
The DTB may be viewed as a cache on a virtual 
memory in which the program is stored in the more 
tightly bound representation, 

When the dissimilarities between the repre- 
sentations corresponding to minimum execution 
time and minimum storage requirements, respectively, 
are great, it is possible that a number of levels 
of dynamic translation will be required. However~ 
in the rest of this paper, we shall concern our- 
selves with only one level of dynamic translation. 
Typically, three different representations are of 
interest: the HLR in which the program is written, 
the static (intermediate) representation into 
which it is compiled and the dynamic representation 
which is obtained by dynamically translating the 
static representation of the working set, Of 
these, only the latter two will be in the directly 
addressable memory during execution. 

The use of dynamic translation permits the 
decoupling of the design decisions involved in 
selecting the intermediate representation. The 
static representation may be selected solely to 
minimize the size of the program. Ideally, it 
should be a high level, highly encoded DIR. The 
dynamic representation, on the other hand, should 
be selected to speed up execution and should, 
ideally, be a high level P-DER. 
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5. Orsanization of the Dynamic Translation Buffer 

5.1. Memory Management 

A factor that strongly influences the choice 
of the static/dynamic pair is the memory allocation 
policy in the DTB. 

Variable allocation. Such a policy permits 
for great flexibility in the choice of the static/ 
dynamic pair. The formats of the static repre- 
sentation need not be constrained to ensure that 
the corresponding dynamic sequence of instructions 
will fit into a pre-specified unit of allocation 
in the DTB. However, the replacement policy is 
constrained since the choice of what is to be re- 
placed in the DTB is influenced by the size of the 
dynamic translation of the incoming instruction. 
Furthermore, the memory fragmentation 33 that 
results will require garbage collection which 
could degrade performance significantly. 

Fixed allocation. While eliminating these 
memory management problems, a fixed allocation 
policy constrains the choice of the static/dynamlc 
pair. The variability of the instruction formats 
in the static representation must be limited to 
permit the choice of a unit of allocation which 
will accommodate the longest dynamic instruction 
translation without wasting much space on the 
shortest one. The dynamic representation in turn 
should be semantically well matched to the static 
representation. 

Variable allocation in fixed size increments. 
This represents a satisfactory compromise between 
the two previous alternatives. A dynamic trans- 
lation that will not fit into the unit of primary 
allocation is assigned one or more units of allo- 
cation in a secondary overflow area. If the unit 
of allocation is shosen judiciously, the frequency 
of overflows may be kept low without space being 
wasted. This permits flexibility in the choice 
of the static and dynamic representations while 
reducing garbage collection to the chore of main- 
taining a list of available space in the overflow 
area. 

5.2. Orsanization 

The organization of the DTB is, for the most 
~art_ similar to that of a conventional cache. 28- 
0,34 It consists of four memory arrays (Figure 2). 

The first two, the associative tag array and the 
address array, are jointly known as the associative 
address array, one half of which contains the 
address of the DIR instruction (the associative 
tag), while the other half contains the address 
at which the P-DER translation is to be found. 
The third array, the buffer array, contains the 
PSDER instructions. This array occupies a prede- 
fined portion of the machine's directly addressable 
memory. As is normally the case. a degree of 
associativity of 4 is employed. 34 The DIR instruc- 
tion address is hashed to select a unique set of 
four address array locations. These four are 
searched in parallel using the DIR address as the 
associative tag. If the required DIR to P-DER 

address mapping is not present, one of these four 
locations must be used to store the mapping. The 
one selected for replacement is that which was 
used least recently. The replacement array keeps 
track of the ordering of each set by recency of 
use. Set associativity of degree 4 has been found 
to be nearly as effective as full associativity. 28 

In cache organizations the pointer into the 
buffer array is implicit, i.e., the address at 
which the match is found in the associative address 
array is used to calculate the required buffer 
array address. Thus the second array (containing 
buffer array addresses) is not physically present. 
The pre~ence of this array, and as part of the 
processor's directly addressable memory, is needed 
to permit the unit of allocation in the buffer to 
be altered to accommodate the needs of different 
HLR's. Variable and variable with fixed increments 
allocation policies, too, are supported by this 
feature. The contents of the address array are 
not altered after initalization if the policy used 
is either fixed allocation or variable allocation 
with fixed increments. The access time to the 
P-DER instructions might be increased (depending 
on the implementation) since two arrays must be 
accessed before the buffer address is obtained. 

6. Architecture of the Universal Host Machine 

The desirable architectural features of a 
universal host machine, (UHM), fall into two broad 
categories: those features that are generally 
useful in the task of interpretation, and those 
that are specific to a UHM that incorporates a 
DTB. ~le former category has been discussed at 
length elsewhere. 35 We shall concern ourselves 
in this paper with merely classifying these 
features into broad categories without dwelling on 
the implementational alternatives. Rather, we 
shall concentrate on the architectural implications 
of using a DTB. 

6.1. General Features 

An language, be it a HLR or DIR, makes certain 
assumptions about the virtual machine to which it 
is bound: 

i. the ability to parse or interpret the syntax 
of the language, 

2. the nature of the memory space, i.e., 

a. the number of memory spaces, e.g., regis- 
ters, control store and main memory, 

b. the type of memory - associative in the 
case of HLR's and directly ad~ressable 
for DIR's. 

3. the legal data structures, with respect to 

a. resolution - the smallest item of infor- 
mation, 

b. size - the relationship of other data 
structures to the unit of information, 

c. structure - the aggregation of simpler 
data types to form more complex ones. 
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4. semantic capability, i.e., 

a. the permitted transformations upon the 
data structures, 

b. the facilities for specifying named ob- 
jects, e.g., subscripted variables, record 
fields in PL/i and base plus displacement 
addressing in conventional machine level 
languages such as System 360, 

c. procedural control structures such as sub- 
routines, coroutines, IF-THEN-ELSE, DO 
WHILE constructs. 

To cope with these assumptions, a UHMmust 
have the following properties: 

i. powerful shift and mask instructions which 
facilitate the extraction and examination of 
arbitrary bit strings. 

2. associative memory or instructions that aid 
in the table look-up that is needed to simu- 
late an associative memory, 

3. i) high memory resolution, i.e., the ability 
to view the memory space as a bit string, 

ii) residual specifications of data structures 
to enable memory to be simultaneously 
viewed in a more structured fashion, 

4. i) good functional resolution, i.e.~ primi- 
tive operations from which functions of 
arbitrary complexity may be synthesized, 

ii) high parallelism so that performance may 
be preserved despite the existence of a 
primitive functional capability, 

iii) structural resolution, viz., the ability 
to manipulate and reconfigure the data 
paths and interconnectivity of the 
functional units at a detailed level, 

iv) residual control over those aspects of the 
datapath structure which are relatively 
static. 

The functional operations provided in the universal 
host machine should include those that can be 
thought of as forming the conmmon denominator of the 
semantic capabilities that are encountered in all 
DIR's that the UHM may be called upon to interpret. 
Considering the diversity of existing and conceiv- 
able HLR's, the commonality of the corresponding 
DIR's will exist only at a rather low semantic 
level, performance of the UHM may be retrieved 
by the provision of a number of primitive func- 
tional units which function concurrently. A short- 
coming of most microprogrammable machines when 
reviewed as UHM's is that data, in the course of 
a register-to-register transfer, undergoes just a 
couple of elementary transformations (e.g., an 
add and a shift). The availability of a large 
number of busses and functional units and a power- 
ful restructuring capability would permit the 
hardware to be configured, on a static or dynamic 
basis, to reflect the data flow graph of complex 
operators. As a result, more significant trans- 
formations could be performed in one register-to- 

register transaction. Thus, whereas the compiler 
binds the HLR down towards the hardware, the 
ability to restructure the data flow topology 
binds the hardware up towards the DIR. 

Primitive operations, a certain amount of 
parallelism and a limited restructuring capability 
are found in horizontally microprogrammable ma- 
chines. Residual control over these abilities can 
allow for shorter instructions without much sacri- 
fice of power. Although elementary operations are 
necessary for the synthesis of arbitrary functions, 
this does not preclude the presence of very power- 
ful features aimed specifically at the task of 
interpretation. Two examples have been noted 
above - powerful shift, mask and extract instruc- 
tions and instructions which support table look-up. 
To be discussed next are architectural features 
built around the presence of a dynamic translation 
buffer. We note that many of the features listed 
above as desirable are present to a greater or 
lesser extent in recent microprogrammable proces- 
sors. 2'II-14 Consequently~ any one of these 
machine architectures could be used as the basis 
for a UHM architecture that includes a DTB. 

6.2. Features Specific to the Use of a DTB 

The organization of a universal host machine 
incorporating a dynamic translation buffer is 
shown at the block level in Figure 3. It is best 
viewed logically as two machines in one, a 
semantic processor which executes the semantic 
routines, and a procedural processor which executes 
P-DER code and steers control between the semantic 
routines. Both machines share certain conmlon 
resources. This specialization of function per- 
mits each processor to be designed to best fit its 
task. The semantic processor is obtained by 
ignoring the portion within the broken lines. 
The semantic routines and the dynamic translation 
routine reside in the level-i (fast) memory. 
Instructions from the level-I memory are presented 
to Instruction Unit i (IUi) which generates the 
control word which specified the control points. 
The instruction set recognized by IUi should 
reflect the desirable features listed in the 
previous section, Since detailed control must be 
exercised over the data paths, the instruction 
format is of the horizontal type, i.e., long and 
unencoded. Residual control may be used to shorten 
the instruction. 

The procedural processor consists of Instruc- 
tion Unit 2 (IU2), the DTB and certain other 
resources of the UHM. The sole function of the 
procedural processor is to call semantic routines 
and to pass parameters to them. Consequently, 
IU2 recognizes just four instructions: CALL, 
PUSH, POP and INTERP. In view of the obvious 
advantages of a stack in managing the entry and 
exit from procedures, it is assumed that one 
exists for stacking return addresses and operands. 
The small instruction repertoire requires a short 
opcode field which is desirable since space in 
the DTB is at a premium. The CALL, PUSH and POP 
instructions each have three variations to allow 
the operand to be specified immediately, directly 
or indirectly. 
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The most important short format instruction 

is the INTERP instruction which exercises the DTB. 
The operand of this instruction is the address of 
a DIR instruction in the DIR address space. The 
INTERP instruction causes this address to be pre- 
sented to the associative address array of the 
DTB. A hit indicates that the P-DER translation 
of the DIR instruction is present in the DTB and 
control is transferred to that sequence of P-DER 
instructions. The last instruction in this 
sequence is another INTERP instruction which 
transfers control to the P-DER version of the 
next DIR instruction which is to be executed. 
When the next DIR instruction is known uncondi- 
tionally (i.e., the sequential successor or the 
target of an unconditional branch) the operand of 
the INTERP instruction is supplied inmnediately. 
When the next DIR instruction address has to be 
computed, the result may be left on the operand 
stack for use by the INTERP instruction. The 
INTERP instruction, therefore, must come in two 
flavors depending on whether the operand is 
specified immediately or left on the stack. Over- 
all, the short format instruction set is similar 
to a simple one address plus stack instruction 
set except, of course, for the INTERP instruction. 

If the hit ratio in the DTB were unity, as it 
will be while the DIR program is in a tight loop, 
the execution of one sequence of P-DER instruc- 
tions would lead directly to the execution of the 
next sequence. The UHM would spend all its time 
in performing computation related to the semantics 
of the DIR program instead of performing overhead 
tasks such as parsing, informatic theoretic de- 
coding and binding which constitute computation 
that is not inherent in the algorithm of the DIR 
program but is the result of the mismatch between 
the representation of the program and the hard- 
war e. 

Averaged over the entire execution of a program, 
the hit ratio will, of course, be less than unity. 
The sequence of actions that result when a miss 
occurs is as follows (Figure 4): the INTERP in- 
struction presents to the DTB a DIR address for 
which a match is not found in the associative 
address array. This causes a trap to the dynamic 
translation routine, the pointer to which is main- 
tained in a dedicated register, DTRPOINT. Simul- 
taneously, the replacement logic of the DTB chooses 
the location into which the P-DER translation is 
to be placed, stores the DIR address in the 
associative tag array and makes available to the 
dynamic translation routine the pointer to the 
location in the DTB at which the P-DER translation 
is to be stored. The dynamic translator fetches 
the DIR instruction, decodes and parses it, gene- 
rates the P-DER translation which it then stores 
in the DTB at the selected location. Lastly, it 
resumes normal operation by transferring control 
to the first instruction in the P-DER translation. 
The dynamic translator does slightly more than a 
conventional interpreter in that it performs 
analysis (of the DIR instruction) as well as code 
generation (of the P-DER sequence) instead of 
merely transferring control to the semantic 
routines. In this respect, it has something in 

common ~ith a compiler. However, since the mapping 
from DIR to P-DER is almost one-to-one, the extra 
computation is not significant and is easily masked 
by the number of times that the task of decoding 
and parsing is avoided. 

The control word is specified by one or the 
other of the instruction units depending on which 
one currently possesses control. When IU2 en- 
counters a CALL to a semantic routine (expressed 
in long format instructions), control is handed 
over to IUi. The last instruction in the semantic 
routine causes a return to the dynamic translation 
of the DIR instruction and automatically returns 
control to IU2. IU2 only executes instructions 
fetched from the DTB. The Instruction Fetch Unit 
(IFU) decides which instruction unit is to be 
active depending on whether the instruction it is 
fetching is from the DTB or elsewhere. 

The DTB is shown in Figure 3 as a separate 
resource, but the address array and the buffer 
array actually form part of the level-i memory. 
Similarly, although the two instruction units are 
shown as separate resources, common portions may 
be shared unless it is desired to have concurrent 
operation of both units in an overlapped mode of 
execution. 

7. Performance Analysis of the Dynamic 

Translation Buffer 

In this section, expressions are derived for 
the average DIR instruction interpretation rate as 
a function of the parameters that affect the per- 
formance to the greatest extent. These parameters 
are : 

Hardware dependent 

rl - the level i access time 

T 2 - the level 2 access time 

T D - the access time to a DTB or cache 
(nominally 2~i) 

Language dependent 

d - average decode time per DIR instruction 
g - average time to generate and store the 

P-DER version of a DIR instruction 
(after decoding has been performed) 

x - average time to perform the semantics of 
a DIR instruction 

s I - average number of level i memory re- 
ferences to access the P-DER version of 
one DIR instruction 

s 2 - average number of level 2 memory re- 
ferences to access one DIR instruction 

Progr~ behavior dependent 

h C - the average hit ratio in a cache (of 
stated capacity) used to buffer DIR 
instructions 

h D - the average hit ratio in a DTB (of 
stated capacity). 

Three cases are of particular interest; the 
performances of a conventional IPHM and that of a 
UHM equipped with a DTB provide a measure of the 
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benefit derived from a DTB. However, the compari- 
son is not quite valid since a UHM with a DTB has 
more resources than a UHM without one. Therefore, 
the case of a UHM with an instruction cache on the 
level 2 memory will be studied, too. For the sake 
of simplicity, it will be assumed that the instruc- 
tion fetch and decode are not overlapped and that 
no instruction prefetch is active. Overlap between 
operand fetch and other computation is permitted 
since it is all lumped into the parameter x and 
is common to all strategies. 

I. Conventional UHM 

T I = s2~ 2 + d + x. 

The average instruction interpretation time is 
composed of three components: the instruction 
fetch time, the time to decode it and the time 
spent in the semantic routines. 

2. A UHM equipped with a DTB 

T 2 = sit D+ (i-hD)S2T 2 + (l-hD)(d + g) +x. 

In this case, the normal instruction fetch time 
is given by the first term, but, on the occurrence 
of a miss in the DTB, level 2 memory must be 
accessed for a DIR instruction (the second term). 
This DIR must be decoded and translated, which 
accounts for the third term. 

3. A UHM equipped with a cache 

T 3 = hcS2~ D + (l-hc)S2~ 2 + d +x. 

The first two terms account for the average 
instruction fetch time. Every DIR instruction 
interpreted must be decoded. For the same capac- 
ity for the cache or DTB, h C will be closer to 

unity than will h D since the DIR representation is 
more compact. 

Two important figures-of-merit for the DTB 
strategy are given by F 1 and F 2 where 

T3-T 2 
F I = T2 X i00 i.e., the percentage degradation 

caused by using the DTB as an 
instruction cache 

and 

Ti-T 2 
F 2 = T2 X i00 i.e., the percentage degradation 

caused by not using a DTB. 

The evaluation of F I and F 2 is hampered by the lack 

of suitable statistics. A number of the parameters 
are very dependent upon the type of program, the 
static and dynamic representations and the archi- 
tecture of the host machine. The figures of merit 
would have to be evaluated for each specific case. 
We shall, however, calculate F I and F 2 for repre- 

sentative and plausible values of the parameters. 

The unit of time is taken to be the access 
time of the level 1 memory which is also assumed 
to be equal to one machine instruction execution 
time. Therefore, T I=I. ~D is assumed to be 

2 X~l =2 and ~2 is assumed to be 10X~l = i0. g is 

set equal to 1.5×d and S 2 is taken to be i and 

s I is chosen to be 3. Thus the dynamic repre- 
sentation of one DIR instruction is assumed to be 
three times as long on the average as the DIR 
instruction. A study of the literature on cache 
memories28,30, 36 indicates that a choice of 0.9 
for h C is reasonable for a cache size of 4096 

bytes. The effective DTB size is 4096/3 bytes 
since S I =3S 2. A reasonable value for hD, then, 

is 0.8. Substituting these values into the above 
equations gives 

0.4+0.6d 
FI 8+0.4d+x × i00 

and 

7.4 + 0.6d 
F2 8+0.4d+x X i00 

where d, the average number of instructions spent 
in decoding a DIR instruction, and x, the average 
time per DIR instruction spent in the semantic 
routines are yet to be specified. 

The parameter d is very dependent upon the 
extent of encoding and the hardware features of 
the host machine. The provision of powerful field 
extraction instructions reduces d. However, the 
use of frequency based encoding increases the 
number of levels of decoding needed. For each 
field, for each level of decoding, at least two 
instructions are needed; the first one extracts 
the field (or a portion thereof) and increments 
the program counter by that amount, causing a 
CASE STATEMENT type Of branch to a list of branch 
instructions. The selected branch instruction 
must then be executed, thereby transferring con- 
trol to either a semantic routine or to another 
routine which continues decoding at the next level. 
Thus even with a powerful host architecture, d 
could easily be equal to i0. For simpler host 
architectures, d might well be twice as large if 
not more. The parameter x can vary greatly de- 
pending on the nature of the DIR and the archi- 
tecture of the host. 

Tables i and 2 list F I and F 2 for various 

values of d and x. The figures demonstrate that 
the DTB does have the potential to improve per- 
formance significantly. The actual values of F I 

and F 2 for any given situation must, of course, 

be evaluated for the specific values that the 
parameters assume in that particular case. In 
general, the figures-of-merit decrease as d 
decreases or as x increases. Thus the DTB is not 
particularly effective if the task of decoding is 
trivial or if the time spent in the semantic 
routines is much greater than the time that would 
be spent in decoding. This would be true, for 
instance, in machines with vector instructions 
which are heavily used. 

8. Conclusion 

The architecture and instruction set of a 
processor is determined by the class of language 
that will be executed (interpreted) by it, either 
directly or following compilation. If this class 
is restricted, the application of the processor 
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is fairly specific and the instruction set will be 
at a high level and closely matched to the single 
or small number of high-level languages that are 
supported by the processor. The several examples 
of high-level machine designs fall into this 
category. 

On the other hand, if the class of languages 
is large and vague, commonality of semantics will 
exist only at a very low level and the instruction 
set of the universal host machine will be primitive. 
Under such circumstances, the high-level language 
and the machine language are extremely dissimilar 
and it is more efficient, both in space and time, 
to interpose an intermediate level, a directly 
interpretable level, into which the program is 
compiled and which is interpreted by an inter- 
preter written in the machine language. An inter- 
mediate language is characterized by its position 
in a two-dimensional space of which one dimension 
is the semantic level of the language and the 
other dimension is the degree of encoding. 

However, the choice of the intermediate 
language is complicated by the fact that it is 
possible to trade-off execution time against the 
size of the intermediate language program repre- 
sentation. The concept of dynamic translation 
has been introduced to overcome this dilen~na. The 
dynamic translator permits the program to be pre- 
sent in a compact, static representation but main- 
tains the working set in a dynamic representation 
that lends itself to speedy execution. The dynamic 
translator dynamically translates instructions 
from one representation to the other as they enter 
the working set. Expressions were derived for two 
figures-of-merit of this scheme and they were 
evaluated for certain typical values of the 
relevant parameters, demonstrating the potential 
performance benefits of this scheme. 

The decoding overhead of a universal host 
machine may be reduced either by providing power- 
ful hardware aids to the decoding process or by 
the use of a dynamic translation buffer which 
decreases the number of instructions that need be 
decoded. The former approach requires the addi- 
tion of random logic whereas the latter approach 
relies on the use of memory. This fact may in- 
fluence the relative cost-effectiveness of the two 
schemes. Future research will be aimed at gather- 
ing statistics which permit a more quantitative 
evaluation of the cost-performance of various 
combinations of intermediate representations and 
universal host machine architectures, with and 
without dynamic translation buffers. 
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