
LEVELS OF REPRESENTATION OF PROGRAMS AND THE ARCHITECTURE OF UNIVERSAL HOST MACHINES

B. Ramakrishna Rau

Coordinated Science Laboratory
University of lllinois, Urbana, IL 61801

Summary

The issue of high level language support is
treated in a systematic top-down manner. Program
representations are categorized into three classes
with respect to a host processor: high level
representations, directly interpretable represen-
tations and directly executable representations.
The space of intermediate languages for high level
language support is explored and it is shown that
whereas the ideal intermediate language from the
point of view of execution time is a directly
executable one, the best candidate from the view-
point of memory requirements is a heavily encoded
directly interpretable representation. The con-
cept of dynamic translation is advanced as a means
for achieving both goals simultaneously; the pro-
gram is present in the memory in a compact static
representation, but its working set is maintained
in a dynamic representation which minimizes
execution time. The architecture and organization
of a universal host machine, incorporating this
strategy, is outlined and the potential perfor-
mance gains due to dynamic translation are studied.

I. Introduction

I.I. Micropro$ramming and Interpretation

Microprogranmaing was originally conceived by
Wilkes as a systematic means of implementing the
control structure of a computer I. The micro-
program, embedded in a read-only memory, inter-
prets the instruction set visible to the
programmer. In view of the permanence of the
microprogram and its transparency to the user, the
interpreted instruction set was, reasonable
enough, thought of as representing the architec-
ture of the machine. Accordingly, the emphasis
was on the interpreted instruction set.

With the advent of writeable control store,
the situation has changed and, yet, the perspec-
tive has remained much the same. Writeable
control store is viewed as a means of providing
a "soft architecture," i.e., one that can be
changed dynamically to match the needs of the
moment which might, for instance, entail the sup-
port of a high level language. Experience with
the Burroughs B17002, 3 and the work of Hoevel 4
has demonstrated the effectiveness of such a
strategy. However, the emphasis still is on the
interpreted instruction set. An artificial line

is drawn upon which lies the conventional machine
language. On one side of this line is the domain
of high level languages, compilers, interpreters
and main memory. On the other side lie the micro-
programs, nanoprograms, emulators and a host of
other micro- and nano- entities. This viewpoint
arises, in part, from the use of microprogrammable
machines predominantly for the purpose of emulat-
ing the instruction sets of other machines. This
classical concept of microprogramming tends to
obfuscate the issue which may be phrased as fol-
lows: given a certain (open ended) set of high
level languages, what is the nature of the host
hardware that is best suited to supporting them
and what is the process by which programs, written
in these high level languages, are supported? A
fresh perspective can be valuable; the host
machine should be viewed as a special purpose
machine designed to provide high level language
support. The architecture and organization should
evolve as the outcome of a top-down design process
rather than as a carry-over from the classical
view of microprogramming. This is the objective
of this paper and so as to avoid any preconceived
notions, the terminology of microprogramming is
avoided as far as is possible.

The architecture and instruction set of a
host is determined by the class of languages that
are to be supported by it. If this class is
restricted and consists of similar languages, the
application of the host is fairly specific and
the instruction set will contain powerful instruc-
tions which closely resemble the semantics of the
high-level languages that are supported by the
host. Several examples of high-level machine
designs fall into this category 5-I0. On the other
hand, if the class of languages is large and
vague, commonality of semantics will exist only
at a very low level and the instruction set of the
host machine will be primitive. This provides
generality and flexibility. A host of this type
is termed a universal host machine (UHM). A
number of examples of UHM's are available2, II-14.

Given a host architecture and a high level
language, one could either interpret the latter
directly, compile it into the machine language or
compile it into an intermediate language which is
then interpreted. Hoevel derives conditions
under which the last alternative is superior to
the other two 15. These conditions are generally
satisfied for the types of universal host archi-
tectures that exist or are under consideration.

67

C111411-817810000-0067500.75 ~ 1978 IEEE

The nature of this intermediate level is treated
in some detail by Hoevel and Flynn 16. The only
true machine language involved is that of the
host. However, to avoid confusion with the inter-
preted instruction set, which is traditionally
viewed as being the machine language, the host's
instruction set will be referred to as the host
machine language.

1.2. Overview

This paper is an attempt to approach the
problem of high level language support in a sys-
tematic manner. The basic assumptions are that,
in the future, most programs will be written in a
high level language, and that the number and var-
iety of languages will not be constrained. In
such an environment, the effectiveness of an
architecture is judged not by the performance
achieved with a particular language but by the
performance over the spectrum of languages.
Accordingly, the focus is on the architecture of
universal host machines and the nature of the
intermediate level language. It is worth empha-
sizing that the universal host machine is not seen
as providing a faster way to interpret a single
language such as the System/360. A specialized
architecture will obviously perform better. The
universal host machine is effective when the
objective is to support a large number of lan-
guages with equal facility.

A top-down treatment must begin by identify-
ing and evaluating the various representations of
programs. In Section 2, three levels are defined:
high level representations, directly interpretable
representations and directly executable represen-
tations. Section 3 considers the space of inter-
mediate representations into which a high level
representation may be compiled. This space is
shown to have two dimensions: semantic level and
the degree of encoding. It is shown that the
ideal intermediate representation varies depending
on whether importance is attached more to the
speed of interpretation or to the compactness of
the representation. Section 4 introduces dynamic
translation as a means of achieving the two goals
simultaneously. The program is stored statically
in the compact representation, but its working
set is translated dynamically into the represen-
tation suitable for speedy interpretation. On
the basis of the "principle of locality" it is
possible for just a small fraction of the program
to be in the dynamic representation and yet to
find that the majority of instructions that are
executed are in the dynamic representation. This
dynamic representation of the working set is main-
tained in a dynamic translation buffer, the organ-
ization and management of which is outlined in
Section 5. Section 6 discusses the architecture
of a universal host machine incorporating a
dynamic translation buffer. Finally, Section 7
attempts to evaluate the effectiveness of the
dynamic translation buffer.

2. Levels of Representation of Programs

Central to the discussion of the various

levels of representation of programs is the con-
cept of binding. We follow Radinl7 in defining
a program to be bound with respect to a given
automaton if the automaton is able to execute this
program correctly. If the automaton is unable to
execute the program due to lack of information
regarding the syntax and semantics of the program
and data structures, then the program is unbound
in those aspects with respect to the automaton.
Binding is the process of supplying the missing
information by augmenting or modifying the program
so that the resulting program representation is
bound with respect to the automaton.

The level of a program representation may be
studied by examining the (virtual) machine to
which it is bound. Higher level representations
are bound to machines that are semantically more
powerful. Although the levels of representation
may vary over a wide range, three broad categories
have particular significance in the context of
high level language support:

2.1. Directly Executable Representations

Assuming that the universal host machine is
specified, one may immediately define the lowest
level; a directly executable representation,
(DER), is one which is bound with respect to the
architecture of the universal host machine. This
is a well defined level since it is possible to
test whether a program representation falls into
this category by attempting to execute it on the
universal host machine. However, as will be seen
subsequently, it is possible to specify more than
one DER for a program.

2.2. High-Level Representations

At the other end of the spectrum is the high-
level representation, (HLR). A HLR is one written
in a hi~ level language, a precise definition of
which is difficult. It is more profitable to
describe a HLR by its characterizing properties.
Of relevance are those properties which affect
the ease with which a HLR may be interpreted.
These properties are best studied by describing
the virtual machine to which the HLR is bound.
Such a machine has:

I. an associative memory to allow a variable
reference to be associated with the variable
declaration statement which specifies the mapping
to type and value. Similarly, an explicit trans-
fer of control to a procedure or label requires
an association with the procedure declaration or
labelled statement;

2. a mechanism which qualifies the above associ-
ation based on the scope rules of a language such
as ALGOL 18 or APLI9;

3. a scanning mechanism which can match BEGIN's
and END"s in a block structured language. Such
a mechanism is needed to skip over nested blocks
which are not to be executed, e.g., in a CASE
statement;

68

4. the ability to parse statements generated by a
recursive grammar;

5. The ability to evaluate expressions in paren-
thesized infix notation obeying rules of
precedence;

6. the ability to handle symbolic names of
arbitrary length.

These features are designed into high level
languages so as to aid the programmer in expres-
sing the algorithm. They also complicate the
task of the interpreter immensely. As a result,
the idea of building hardware to directly
interpret a HLR is unattractive and even so-
called high-level language machines invariably
translate the HLR to some other internal
representation.

2.3. Directly Interpretable Representations

The purpose of compilation is to translate
the HLR into a representation that is devoid of
the problems that arise in directly interpreting
a HLR. This representation should be bound to
a virtual machine that more closely resembles the
host than does the HLR's virtual machine. In
particu~ r:

I. the representation should be bound to a
directly addressed memory;

2. variables and labels should be bound to memory
locations to the extent permitted by the HLR;

3. the hierarchical, block structure of the HLR
should be replaced by the familiar sequential
form with explicit branches around code which is
not to be executed;

4. the syntax should be context-insensitive and
relatively simple;

5. expressions should be decomposed into a non-
hierarchical form, preferably reverse Polish
notation;

6. the size of operand and operation specifi-
cations should belong to a small, well-defined
set of possibilities.

The resulting representation allows for a faster
and more efficient interpreter. It also does not
require a preliminary scan (to set up symbol
tables and resolve forward references) before the
program can be interpreted. Such a representation
is termed a directly interpretabl ~ representation
(DIR). The class of DER's is a special subset of
the class of DIR's. Programs written in con-
ventional machine languages, the S-languages of
the BI7003 and DELTRAN 4 are examples of DIR's.

3. The Space of Intermediate Representations

The intermediate representation that results
from compiling a HLR could assume any number of
forms. From the point of view of the speed of

interpretation and the size of the represen-
tation, the space of intermediate representations
may be parameterized in two-dimensions -- the
semantic level and the degree of encoding.

3.1. One Dimension: The Semantic Level

The representation of lowest semantic level
is obtained by compiling down directly to the
host machine language. Such a DER is termed an
S-DER. Since any computation performed by the
host must eventually be performed in the host
machine language, the S-DER might be expected to
provide the shortest possible execution time in
a host machine which has a single level of memory.

The manner in which compilers generate code
(by substituting similar sequences of code for
occurrences of the same terminal symbol) may be
exploited by replacing every such sequence by a
call to a generalized procedure which performs
the same function. The arguements of the call
are included in-line. The resulting procedurally
structured DER is termed a P-DER. While being
considerable more compact than an S-DER, the
speed of execution of the P-DER suffers from
having to pass parameters and from the loss of
the local optimization based on context that must
be sacrificed when using a procedure. The
procedure calls are logically equivalent to more
powerful opcodes and, so, the semantic level of
the P-DER is higher than that of the S-DER.
Nevertheless, the P-DER remains directly execut-
able, the binding being performed explicitly via
the procedure calls. The semantic level of the
P-DER is determined by the functional complexity
of the semantic routines.

Further economy of size may be achieved by
combining sequences of P-DER procedure calls into
single calls to procedures that perform the same
function as the sequence of calls. Clearly, the
inclusion of every possible sequence (of a given
length) does little to compact the program
representation and leads to a combinatorial
increase in the number of semantic routines.
Consequently, such a scheme, to be successful,
must discard all but a selected set of sequences
which are then combined. The resulting represen-
tation is constrained by this selection and is
termed a C-DER. Unless the selection of the C-DER
procedures is undertaken carefully, the loss of
semantic flexibility manifests itself in the
inefficient generation of code by the compiler
and a resultant increase in execution time. The
C-DER is logically equivalent to a representation
in a machine language with a limited choice of
instruction formats, e.g., a three-address format
alone.

3.2. The Other Dimension: The Desree of Encoding

Every DIR which is not a DER ~y be viewed as
being an encoded form of a DER. The simplest
form of encoding is obtained with a P-DER consist-
ing solely of procedure calls and no other host
machine language instructions in-line. In such a
P-DER the opcode portion of the procedure call is

69

redundant and may be discarded. The new represen-
tation consists of the addresses of the semantic
routines followed by the arguements of the call.
Such a representation has been termed "threaded
code" by Bell 20. The address of a semantic
routine along with the arguements to the call
form an instruction in the new representation with
the address of the routine assuming the role of
an opcode. The reduction in program size is
accompanied by a significant disadvantage. The
representation is no longer a DER but rather a
DIR. The DIR must be interpreted by an inter-
preter which increases the execution time. (In
Bell's threaded code, the interpreter consists
of code in each semantic routine which increments
the DIR program counter past the arguements and a
final branch to the location pointed to indirectly
by the DIR program counter).

Further code compaction is achieved by select-
ing the sizes of the DIR's opcode and arguement
fields independently of the size of the smallest
unit of memory access (e.g., a word or byte). The
instruction fields are packed together with fields
being allowed to overlap access boundaries or
with multiple fields in one access unit. Most
conventional machine languages fall into this
category. The price paid is that the interpreter
must extract these fields before performing the
semantics of the DIR instruction.

An encoding based on contextual information
may be used to reduce the size of each field. For
instance, the scope rules of a high level language
limit the number of variables that may be refer-
enced from within a given contour 21. The operand
specification field need be no larger than
necessary to select between these variables. This
technique has been used in DELTRAN 4.

A more sophisticated Huffman encoding 22,
based on the static frequencies of occurrence of
the operators and operands, leads to further
economics in program size, often up to 75%
reductions in size3, 23-25. A compromise between
decoding time and encoding efficiency may be
achieved by limiting field sizes to a small number
of alternatives 3. This frequency based encoding
scheme may be generalized by considering the
frequency of occurrence of pair, triples, etc.,
23-z5, and may be combined with contour-based
encoding scheme. The S-languages of the BI700
are examples of the successful application of
frequency based encoding techniques.

3.3. Comparison of Intermediate Representations

If the host machine possesses only a single
level of directly addressable memory, the space/
time trade-offs are straightforward; an increase
in the semantic level or in the degree of encoding
generally decreases the size of the intermediate
representation but increases the time needed to
execute or interpret it. The fastest and least
compact representation is the S-DER obtained by
directly compiling into the host machine language.

The presence of a memory hierarchy leads to
more interesting trade-offs. A P-DER or DIR
partitions the memory space into two parts --
that consisting of the P-DER calls or DIR instruc-
tions and that consisting of the semantic routines
and the interpreter. Each reference to the former
part generates a large number of references to the
latter]part, which thus becomes a prime candidate
for placement in the faster portion of the memory
hierarchy. The average memory access time is
reduced as compared to the average memory access
time using an S-DER. Thus the use of a P-DER or
DIR is beneficial both in space and in time and a
well designed host machine must possess a memory
hierarchy to capitalize on this property. In
fact, all microprogrammable machines possess st
least two levels -- control store and main
memory -- which explains, in part, why traditional
microprogrammable machines and universal host
machines sre equated.

The space of intermediate representations
may be graphically represented as in Figure I.
The vertical dimension is s measure of the syn-
tactic and semantic complexity of the represen-
tation. The horizontal dimension specifies the
complexity of the encoding. A point in the space
denotes a representation. In general, the size
of a program decreases with increasing distance
of the representation from the origin, but the
size of the interpreter and semantic routines
increases although by a smaller extent. Assuming
a two-level memory hierarchy, the interpretation
time may be expected to decrease in the vertical
direction with increasing level. At the same
time, the compile time will decrease since it,
presumably, is easier to compile into a higher
level intermediate level than it is to compile
into one which is greatly removed from the HLR.
As one moves to the right, both interpretation and
compilation time may be expected to increase. The
increase in compilation time is caused by having
to compile first into an unencoded form followed
by an encoding step.

If one is concerned only with the size of the
intermediate representation and the interpretation
time, the former consideration would indicate the
use of a highly encoded DIR of s level as high as
can be tolerated from the point of view of inter-
preter size. The latter consideration would
indicate the use of a P-DER, once again of as high
s level as the size of the semantic routines will
permit. The size of the semantic routines and
interpreter is important since they must fit into
the faster, smaller levels of the hierarchy if
high speed interpretation is to be achieved. In
the next section, a method of simultaneously
fulfilling these contradictory requirements of
high speed interpretation and a compact inter-
mediate representation of the program, is
presented.

4. Dynamic Translation of Program Representations

A characterizing property of a compiler is
that whatever binding it does persists over the
entire]period of execution of the program. The

70

interpreter must complete whatever binding remains.
However, this binding persists only over the
period of execution of an instruction and must be
repeated each time that instruction is executed.
From the point of view of persistence of bindings
the compiler and interpreter are at opposite
extremes. We introduce the notion of a dynamic
translator, the persistence of whose binding lies
in between that of the compiler and the inter-
preter. Once the dynamic translator binds an
instruction (totally or partially), it remains
bound over a period of time that spans a certain
number of successive executions of that instruc-
tion. Such a strategy assumes, of course, that
the program is not self-modifying -- an assumption
that is valid when programs are written in high-
level languages.

One could conceive of a hierarchy of repre-
sentations each with a different level of binding
and degree of persistence: the source program
which exists until destroyed, the DIR which lasts
until the source is modified, the link-edited
version which exists for one execution of the
program, possibly a number of lower levels, each
increasingly bound and persisting for decreasing
fractions of the program execution period and,
finally, a completely bound representation of an
instruction which only lasts for the duration of
that instruction's execution.

The significance of the dynamic translator is
that it raises the possibility of simultaneously
achieving high speed interpretation and a compact
static intermediate representation. Since the
binding performed by a dynamic translator persists
over a number of executions of an instruction,
the time spent in binding is spread out over those
instructions, thereby reducing the average time
spent in binding per instruction executed. It is
possible then to use a highly encoded DIR without
increasing the interpretation time by very much
if the binding is made to persist over a suffici-
ent number of successive executions of the same
instruction. This persistence of binding is
effected by saving the bound representation of the
instruction which w~ll be less compact than the
encoded DIR version. Attempting to retain this
bound version for extended periods of time for a
number of different instructions will entail the
use of large amounts of memory. In fact, if
the bound version were never discarded, one would
soon obtain and have to provide storage for a
translated version of the entire program, thereby
defeating the purpose of using an encoded DIR.

The effectiveness of the dynamic translator
hinges on the ability to save the bound represen-
tation for just a short period of time which,
nevertheless, spans a large number of executions
of the instruction. The existence of loops and
recursive calls implies this ability. In fact,
the more general "principle of locality" states
that over any interval of time, the vast majority
of memory references are concentrated on a small
subset of the address space. This principle has
been empirically validated over and again 26"28
and is the fundamental justification for the

existence of cache memories 28-30 and virtual
memories.31, 32 The fraction of the address space
that is currently being referenced heavily is
termed the working set. 27 The function of the
dynamic translator is to maintain in the dynamic
translation buffer (DTB) a representation of the
instruction working set that is more tightly bound
than the static representation. If the size of
the DTB is reasonably large and if the contents
of the DTB are selected carefully, it is possible
to ensure that a large fraction of all instructions
executed will be present in the DTB. This fraction
is termed the hit ratio. When the hit ratio is
close to unity, most instructions when executed
will be found in the more tightly bound representa-
tion. The time penalty associated with binding
will be experienced only rarely and will not be a
major factor in determining the execution time.
If, at the same time, the size of the DTB is small
in comparison to the size of the loosely bound
representation, the memory requirements will not
have been increased substantially and the con-
flicting requirements of a compact representation
and low execution time will be met simultaneously.

The concept of a DTB is related to that of the
dynamic address translation mechanism provided
with virtual memories. When addressing a virtual
memory, the virtual address must be bound to a
physical address. This involves indirection
through one or more segment and page tables on
each memory reference. This overhead is reduced by
retaining in an associative array the mapping
between the virtual and physical addresses for the
pages which have been referenced most recently.
The DTB may be viewed as a cache on a virtual
memory in which the program is stored in the more
tightly bound representation,

When the dissimilarities between the repre-
sentations corresponding to minimum execution
time and minimum storage requirements, respectively,
are great, it is possible that a number of levels
of dynamic translation will be required. However~
in the rest of this paper, we shall concern our-
selves with only one level of dynamic translation.
Typically, three different representations are of
interest: the HLR in which the program is written,
the static (intermediate) representation into
which it is compiled and the dynamic representation
which is obtained by dynamically translating the
static representation of the working set, Of
these, only the latter two will be in the directly
addressable memory during execution.

The use of dynamic translation permits the
decoupling of the design decisions involved in
selecting the intermediate representation. The
static representation may be selected solely to
minimize the size of the program. Ideally, it
should be a high level, highly encoded DIR. The
dynamic representation, on the other hand, should
be selected to speed up execution and should,
ideally, be a high level P-DER.

71

5. Orsanization of the Dynamic Translation Buffer

5.1. Memory Management

A factor that strongly influences the choice
of the static/dynamic pair is the memory allocation
policy in the DTB.

Variable allocation. Such a policy permits
for great flexibility in the choice of the static/
dynamic pair. The formats of the static repre-
sentation need not be constrained to ensure that
the corresponding dynamic sequence of instructions
will fit into a pre-specified unit of allocation
in the DTB. However, the replacement policy is
constrained since the choice of what is to be re-
placed in the DTB is influenced by the size of the
dynamic translation of the incoming instruction.
Furthermore, the memory fragmentation 33 that
results will require garbage collection which
could degrade performance significantly.

Fixed allocation. While eliminating these
memory management problems, a fixed allocation
policy constrains the choice of the static/dynamlc
pair. The variability of the instruction formats
in the static representation must be limited to
permit the choice of a unit of allocation which
will accommodate the longest dynamic instruction
translation without wasting much space on the
shortest one. The dynamic representation in turn
should be semantically well matched to the static
representation.

Variable allocation in fixed size increments.
This represents a satisfactory compromise between
the two previous alternatives. A dynamic trans-
lation that will not fit into the unit of primary
allocation is assigned one or more units of allo-
cation in a secondary overflow area. If the unit
of allocation is shosen judiciously, the frequency
of overflows may be kept low without space being
wasted. This permits flexibility in the choice
of the static and dynamic representations while
reducing garbage collection to the chore of main-
taining a list of available space in the overflow
area.

5.2. Orsanization

The organization of the DTB is, for the most
~art_ similar to that of a conventional cache. 28-
0,34 It consists of four memory arrays (Figure 2).

The first two, the associative tag array and the
address array, are jointly known as the associative
address array, one half of which contains the
address of the DIR instruction (the associative
tag), while the other half contains the address
at which the P-DER translation is to be found.
The third array, the buffer array, contains the
PSDER instructions. This array occupies a prede-
fined portion of the machine's directly addressable
memory. As is normally the case. a degree of
associativity of 4 is employed. 34 The DIR instruc-
tion address is hashed to select a unique set of
four address array locations. These four are
searched in parallel using the DIR address as the
associative tag. If the required DIR to P-DER

address mapping is not present, one of these four
locations must be used to store the mapping. The
one selected for replacement is that which was
used least recently. The replacement array keeps
track of the ordering of each set by recency of
use. Set associativity of degree 4 has been found
to be nearly as effective as full associativity. 28

In cache organizations the pointer into the
buffer array is implicit, i.e., the address at
which the match is found in the associative address
array is used to calculate the required buffer
array address. Thus the second array (containing
buffer array addresses) is not physically present.
The pre~ence of this array, and as part of the
processor's directly addressable memory, is needed
to permit the unit of allocation in the buffer to
be altered to accommodate the needs of different
HLR's. Variable and variable with fixed increments
allocation policies, too, are supported by this
feature. The contents of the address array are
not altered after initalization if the policy used
is either fixed allocation or variable allocation
with fixed increments. The access time to the
P-DER instructions might be increased (depending
on the implementation) since two arrays must be
accessed before the buffer address is obtained.

6. Architecture of the Universal Host Machine

The desirable architectural features of a
universal host machine, (UHM), fall into two broad
categories: those features that are generally
useful in the task of interpretation, and those
that are specific to a UHM that incorporates a
DTB. ~le former category has been discussed at
length elsewhere. 35 We shall concern ourselves
in this paper with merely classifying these
features into broad categories without dwelling on
the implementational alternatives. Rather, we
shall concentrate on the architectural implications
of using a DTB.

6.1. General Features

An language, be it a HLR or DIR, makes certain
assumptions about the virtual machine to which it
is bound:

i. the ability to parse or interpret the syntax
of the language,

2. the nature of the memory space, i.e.,

a. the number of memory spaces, e.g., regis-
ters, control store and main memory,

b. the type of memory - associative in the
case of HLR's and directly ad~ressable
for DIR's.

3. the legal data structures, with respect to

a. resolution - the smallest item of infor-
mation,

b. size - the relationship of other data
structures to the unit of information,

c. structure - the aggregation of simpler
data types to form more complex ones.

72

4. semantic capability, i.e.,

a. the permitted transformations upon the
data structures,

b. the facilities for specifying named ob-
jects, e.g., subscripted variables, record
fields in PL/i and base plus displacement
addressing in conventional machine level
languages such as System 360,

c. procedural control structures such as sub-
routines, coroutines, IF-THEN-ELSE, DO
WHILE constructs.

To cope with these assumptions, a UHMmust
have the following properties:

i. powerful shift and mask instructions which
facilitate the extraction and examination of
arbitrary bit strings.

2. associative memory or instructions that aid
in the table look-up that is needed to simu-
late an associative memory,

3. i) high memory resolution, i.e., the ability
to view the memory space as a bit string,

ii) residual specifications of data structures
to enable memory to be simultaneously
viewed in a more structured fashion,

4. i) good functional resolution, i.e.~ primi-
tive operations from which functions of
arbitrary complexity may be synthesized,

ii) high parallelism so that performance may
be preserved despite the existence of a
primitive functional capability,

iii) structural resolution, viz., the ability
to manipulate and reconfigure the data
paths and interconnectivity of the
functional units at a detailed level,

iv) residual control over those aspects of the
datapath structure which are relatively
static.

The functional operations provided in the universal
host machine should include those that can be
thought of as forming the conmmon denominator of the
semantic capabilities that are encountered in all
DIR's that the UHM may be called upon to interpret.
Considering the diversity of existing and conceiv-
able HLR's, the commonality of the corresponding
DIR's will exist only at a rather low semantic
level, performance of the UHM may be retrieved
by the provision of a number of primitive func-
tional units which function concurrently. A short-
coming of most microprogrammable machines when
reviewed as UHM's is that data, in the course of
a register-to-register transfer, undergoes just a
couple of elementary transformations (e.g., an
add and a shift). The availability of a large
number of busses and functional units and a power-
ful restructuring capability would permit the
hardware to be configured, on a static or dynamic
basis, to reflect the data flow graph of complex
operators. As a result, more significant trans-
formations could be performed in one register-to-

register transaction. Thus, whereas the compiler
binds the HLR down towards the hardware, the
ability to restructure the data flow topology
binds the hardware up towards the DIR.

Primitive operations, a certain amount of
parallelism and a limited restructuring capability
are found in horizontally microprogrammable ma-
chines. Residual control over these abilities can
allow for shorter instructions without much sacri-
fice of power. Although elementary operations are
necessary for the synthesis of arbitrary functions,
this does not preclude the presence of very power-
ful features aimed specifically at the task of
interpretation. Two examples have been noted
above - powerful shift, mask and extract instruc-
tions and instructions which support table look-up.
To be discussed next are architectural features
built around the presence of a dynamic translation
buffer. We note that many of the features listed
above as desirable are present to a greater or
lesser extent in recent microprogrammable proces-
sors. 2'II-14 Consequently~ any one of these
machine architectures could be used as the basis
for a UHM architecture that includes a DTB.

6.2. Features Specific to the Use of a DTB

The organization of a universal host machine
incorporating a dynamic translation buffer is
shown at the block level in Figure 3. It is best
viewed logically as two machines in one, a
semantic processor which executes the semantic
routines, and a procedural processor which executes
P-DER code and steers control between the semantic
routines. Both machines share certain conmlon
resources. This specialization of function per-
mits each processor to be designed to best fit its
task. The semantic processor is obtained by
ignoring the portion within the broken lines.
The semantic routines and the dynamic translation
routine reside in the level-i (fast) memory.
Instructions from the level-I memory are presented
to Instruction Unit i (IUi) which generates the
control word which specified the control points.
The instruction set recognized by IUi should
reflect the desirable features listed in the
previous section, Since detailed control must be
exercised over the data paths, the instruction
format is of the horizontal type, i.e., long and
unencoded. Residual control may be used to shorten
the instruction.

The procedural processor consists of Instruc-
tion Unit 2 (IU2), the DTB and certain other
resources of the UHM. The sole function of the
procedural processor is to call semantic routines
and to pass parameters to them. Consequently,
IU2 recognizes just four instructions: CALL,
PUSH, POP and INTERP. In view of the obvious
advantages of a stack in managing the entry and
exit from procedures, it is assumed that one
exists for stacking return addresses and operands.
The small instruction repertoire requires a short
opcode field which is desirable since space in
the DTB is at a premium. The CALL, PUSH and POP
instructions each have three variations to allow
the operand to be specified immediately, directly
or indirectly.

73

The most important short format instruction

is the INTERP instruction which exercises the DTB.
The operand of this instruction is the address of
a DIR instruction in the DIR address space. The
INTERP instruction causes this address to be pre-
sented to the associative address array of the
DTB. A hit indicates that the P-DER translation
of the DIR instruction is present in the DTB and
control is transferred to that sequence of P-DER
instructions. The last instruction in this
sequence is another INTERP instruction which
transfers control to the P-DER version of the
next DIR instruction which is to be executed.
When the next DIR instruction is known uncondi-
tionally (i.e., the sequential successor or the
target of an unconditional branch) the operand of
the INTERP instruction is supplied inmnediately.
When the next DIR instruction address has to be
computed, the result may be left on the operand
stack for use by the INTERP instruction. The
INTERP instruction, therefore, must come in two
flavors depending on whether the operand is
specified immediately or left on the stack. Over-
all, the short format instruction set is similar
to a simple one address plus stack instruction
set except, of course, for the INTERP instruction.

If the hit ratio in the DTB were unity, as it
will be while the DIR program is in a tight loop,
the execution of one sequence of P-DER instruc-
tions would lead directly to the execution of the
next sequence. The UHM would spend all its time
in performing computation related to the semantics
of the DIR program instead of performing overhead
tasks such as parsing, informatic theoretic de-
coding and binding which constitute computation
that is not inherent in the algorithm of the DIR
program but is the result of the mismatch between
the representation of the program and the hard-
war e.

Averaged over the entire execution of a program,
the hit ratio will, of course, be less than unity.
The sequence of actions that result when a miss
occurs is as follows (Figure 4): the INTERP in-
struction presents to the DTB a DIR address for
which a match is not found in the associative
address array. This causes a trap to the dynamic
translation routine, the pointer to which is main-
tained in a dedicated register, DTRPOINT. Simul-
taneously, the replacement logic of the DTB chooses
the location into which the P-DER translation is
to be placed, stores the DIR address in the
associative tag array and makes available to the
dynamic translation routine the pointer to the
location in the DTB at which the P-DER translation
is to be stored. The dynamic translator fetches
the DIR instruction, decodes and parses it, gene-
rates the P-DER translation which it then stores
in the DTB at the selected location. Lastly, it
resumes normal operation by transferring control
to the first instruction in the P-DER translation.
The dynamic translator does slightly more than a
conventional interpreter in that it performs
analysis (of the DIR instruction) as well as code
generation (of the P-DER sequence) instead of
merely transferring control to the semantic
routines. In this respect, it has something in

common ~ith a compiler. However, since the mapping
from DIR to P-DER is almost one-to-one, the extra
computation is not significant and is easily masked
by the number of times that the task of decoding
and parsing is avoided.

The control word is specified by one or the
other of the instruction units depending on which
one currently possesses control. When IU2 en-
counters a CALL to a semantic routine (expressed
in long format instructions), control is handed
over to IUi. The last instruction in the semantic
routine causes a return to the dynamic translation
of the DIR instruction and automatically returns
control to IU2. IU2 only executes instructions
fetched from the DTB. The Instruction Fetch Unit
(IFU) decides which instruction unit is to be
active depending on whether the instruction it is
fetching is from the DTB or elsewhere.

The DTB is shown in Figure 3 as a separate
resource, but the address array and the buffer
array actually form part of the level-i memory.
Similarly, although the two instruction units are
shown as separate resources, common portions may
be shared unless it is desired to have concurrent
operation of both units in an overlapped mode of
execution.

7. Performance Analysis of the Dynamic

Translation Buffer

In this section, expressions are derived for
the average DIR instruction interpretation rate as
a function of the parameters that affect the per-
formance to the greatest extent. These parameters
are :

Hardware dependent

rl - the level i access time

T 2 - the level 2 access time

T D - the access time to a DTB or cache
(nominally 2~i)

Language dependent

d - average decode time per DIR instruction
g - average time to generate and store the

P-DER version of a DIR instruction
(after decoding has been performed)

x - average time to perform the semantics of
a DIR instruction

s I - average number of level i memory re-
ferences to access the P-DER version of
one DIR instruction

s 2 - average number of level 2 memory re-
ferences to access one DIR instruction

Progr~ behavior dependent

h C - the average hit ratio in a cache (of
stated capacity) used to buffer DIR
instructions

h D - the average hit ratio in a DTB (of
stated capacity).

Three cases are of particular interest; the
performances of a conventional IPHM and that of a
UHM equipped with a DTB provide a measure of the

74

benefit derived from a DTB. However, the compari-
son is not quite valid since a UHM with a DTB has
more resources than a UHM without one. Therefore,
the case of a UHM with an instruction cache on the
level 2 memory will be studied, too. For the sake
of simplicity, it will be assumed that the instruc-
tion fetch and decode are not overlapped and that
no instruction prefetch is active. Overlap between
operand fetch and other computation is permitted
since it is all lumped into the parameter x and
is common to all strategies.

I. Conventional UHM

T I = s2~ 2 + d + x.

The average instruction interpretation time is
composed of three components: the instruction
fetch time, the time to decode it and the time
spent in the semantic routines.

2. A UHM equipped with a DTB

T 2 = sit D+ (i-hD)S2T 2 + (l-hD)(d + g) +x.

In this case, the normal instruction fetch time
is given by the first term, but, on the occurrence
of a miss in the DTB, level 2 memory must be
accessed for a DIR instruction (the second term).
This DIR must be decoded and translated, which
accounts for the third term.

3. A UHM equipped with a cache

T 3 = hcS2~ D + (l-hc)S2~ 2 + d +x.

The first two terms account for the average
instruction fetch time. Every DIR instruction
interpreted must be decoded. For the same capac-
ity for the cache or DTB, h C will be closer to

unity than will h D since the DIR representation is
more compact.

Two important figures-of-merit for the DTB
strategy are given by F 1 and F 2 where

T3-T 2
F I = T2 X i00 i.e., the percentage degradation

caused by using the DTB as an
instruction cache

and

Ti-T 2
F 2 = T2 X i00 i.e., the percentage degradation

caused by not using a DTB.

The evaluation of F I and F 2 is hampered by the lack

of suitable statistics. A number of the parameters
are very dependent upon the type of program, the
static and dynamic representations and the archi-
tecture of the host machine. The figures of merit
would have to be evaluated for each specific case.
We shall, however, calculate F I and F 2 for repre-

sentative and plausible values of the parameters.

The unit of time is taken to be the access
time of the level 1 memory which is also assumed
to be equal to one machine instruction execution
time. Therefore, T I=I. ~D is assumed to be

2 X~l =2 and ~2 is assumed to be 10X~l = i0. g is

set equal to 1.5×d and S 2 is taken to be i and

s I is chosen to be 3. Thus the dynamic repre-
sentation of one DIR instruction is assumed to be
three times as long on the average as the DIR
instruction. A study of the literature on cache
memories28,30, 36 indicates that a choice of 0.9
for h C is reasonable for a cache size of 4096

bytes. The effective DTB size is 4096/3 bytes
since S I =3S 2. A reasonable value for hD, then,

is 0.8. Substituting these values into the above
equations gives

0.4+0.6d
FI 8+0.4d+x × i00

and

7.4 + 0.6d
F2 8+0.4d+x X i00

where d, the average number of instructions spent
in decoding a DIR instruction, and x, the average
time per DIR instruction spent in the semantic
routines are yet to be specified.

The parameter d is very dependent upon the
extent of encoding and the hardware features of
the host machine. The provision of powerful field
extraction instructions reduces d. However, the
use of frequency based encoding increases the
number of levels of decoding needed. For each
field, for each level of decoding, at least two
instructions are needed; the first one extracts
the field (or a portion thereof) and increments
the program counter by that amount, causing a
CASE STATEMENT type Of branch to a list of branch
instructions. The selected branch instruction
must then be executed, thereby transferring con-
trol to either a semantic routine or to another
routine which continues decoding at the next level.
Thus even with a powerful host architecture, d
could easily be equal to i0. For simpler host
architectures, d might well be twice as large if
not more. The parameter x can vary greatly de-
pending on the nature of the DIR and the archi-
tecture of the host.

Tables i and 2 list F I and F 2 for various

values of d and x. The figures demonstrate that
the DTB does have the potential to improve per-
formance significantly. The actual values of F I

and F 2 for any given situation must, of course,

be evaluated for the specific values that the
parameters assume in that particular case. In
general, the figures-of-merit decrease as d
decreases or as x increases. Thus the DTB is not
particularly effective if the task of decoding is
trivial or if the time spent in the semantic
routines is much greater than the time that would
be spent in decoding. This would be true, for
instance, in machines with vector instructions
which are heavily used.

8. Conclusion

The architecture and instruction set of a
processor is determined by the class of language
that will be executed (interpreted) by it, either
directly or following compilation. If this class
is restricted, the application of the processor

75

is fairly specific and the instruction set will be
at a high level and closely matched to the single
or small number of high-level languages that are
supported by the processor. The several examples
of high-level machine designs fall into this
category.

On the other hand, if the class of languages
is large and vague, commonality of semantics will
exist only at a very low level and the instruction
set of the universal host machine will be primitive.
Under such circumstances, the high-level language
and the machine language are extremely dissimilar
and it is more efficient, both in space and time,
to interpose an intermediate level, a directly
interpretable level, into which the program is
compiled and which is interpreted by an inter-
preter written in the machine language. An inter-
mediate language is characterized by its position
in a two-dimensional space of which one dimension
is the semantic level of the language and the
other dimension is the degree of encoding.

However, the choice of the intermediate
language is complicated by the fact that it is
possible to trade-off execution time against the
size of the intermediate language program repre-
sentation. The concept of dynamic translation
has been introduced to overcome this dilen~na. The
dynamic translator permits the program to be pre-
sent in a compact, static representation but main-
tains the working set in a dynamic representation
that lends itself to speedy execution. The dynamic
translator dynamically translates instructions
from one representation to the other as they enter
the working set. Expressions were derived for two
figures-of-merit of this scheme and they were
evaluated for certain typical values of the
relevant parameters, demonstrating the potential
performance benefits of this scheme.

The decoding overhead of a universal host
machine may be reduced either by providing power-
ful hardware aids to the decoding process or by
the use of a dynamic translation buffer which
decreases the number of instructions that need be
decoded. The former approach requires the addi-
tion of random logic whereas the latter approach
relies on the use of memory. This fact may in-
fluence the relative cost-effectiveness of the two
schemes. Future research will be aimed at gather-
ing statistics which permit a more quantitative
evaluation of the cost-performance of various
combinations of intermediate representations and
universal host machine architectures, with and
without dynamic translation buffers.

Acknowledgments This paper has benefitted
greatly from the long discussions between the
author and Michael Schlansker and from the very
constructive criticism offered by Ceorge Rossmann
and Michael Flynu. Any residual deficiencies are
to be credited solely to the author.

References

i. M.V. Wilkes, "The best way to design an
automatic calculating machine," Manchester

2.

3.

4.

5.

6.

7.

8.

9.

i0.

ii.

12.

13.

14.

15.

16.

Univ. Comput. Inaugur. Conf., 1951, p. 16.

W. T. Wilner, "Design of the Bi700," AFIPS
Conf. Proc., 1972 FJCC, 41, 489-497, Montvale,
NJ, AFIPS Press.

W. T. Wilner, "Burroughs B-1700 Memory Utili-
zation," AFIPS Conf. Proc., 1972 FJCC, 41,
579-586, Montvale, NJ, AFIPS Press.

L. W. Hoevel, "DELTRAN Principles of Operation:
A Directly Executed Language for FORTRAN-If,"
Tech. Note No. 108, Digital Systems Laboratory,
Stanford Univ., Stanford, CA, March 1977.

J. P. Anderson, "A computer for direct execu-
tion of algorithmic languages," Proc. EJCC,
1961, 184-193.

Y. Chu, "Introducing the high-level language
conjurer architecture," Tech. Rep. No. TR-227,
Con~ut. Sci. Center, Univ. Maryland, College
Park, Maryland, 1973.

H. M. Bloom, "Design and simulation of an
ALGOL computer," Tech. Rep. No. 70-118,
C~put. Sci. Center, Maryland, College Park,
Maryland, 1970.

T. R. Bashkow, A. Sasson and A. Kronfeld,
"System design for a FORTRAN machine," IEEE-
TEC, Aug. 1971, 485-499.

M. Sugimoto, "PL/i reducer and direct proces-
sor," Proc. ACM, 1969, 519-538.

R. Rice and W. R. Smith, "SYMBOL - A major
departure from classic software dominated von
Neumann computing systems," SJCC, 1971, 575-
587.

E. W. Reigel, V. Faber and D. A. Fisher, "The
inlterpreter - a mieroprogrammable building
block system," AFIPS Conf. Proc., 1972 SJCC,
40, 705-723, Montvale, NJ, AFIPS Press.

H. W. Lawson and B. K. Smith, "Functional
Characteristics of a Multilingual Processor,"
IEEE-TC, 20, July 1971, 732-742.

Nanodata Corp., "QM-i Hardware Level User's
Manual," Second Edition, August 1974.

M. J. Flynn, C. J. Neuhauser and R. M. McClure,
'~iMMY - an emulation system for user micro-
programming," AFIPS Conference Proceedings,
1975 NCC, 85-89.

L. W. Hoevel, "'Ideal' directly executed
languages: an analytic argument for emu-
lation," IEEE-TC, 23, 8, 1974, 759-767.

L. W. Hoevel and M. J. Flynn, "The Structure
of Directly Executed Languages: A New Theory
of Interpretive System Support," Digital
Systems Lab. Tech. Rep. No. 130, Stanford
Univ., March 1977.

76

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

G. Radin, '~ note on the concept of binding,"
IBM Thomas J. Watson Res. Rep. No. RC 3287,
Yorktown Heights, NY, March 1971.

P. Naur, (Ed.), "Revised report on the
algorithmic language ALGOL 60," CACM 6,
Jan. 1963, 1-17.

K. E. Iverson, '~ Programming Language,"
Wiley, New York, 1962.

J. R. Bell, "Threaded Code," CACM, 16, 6,
June 1973, 370-372.

J. B. Johnston, "The Contour Model of Block
Structured Processes," Proceedings of the
SDSPL (SIGPLAN Notices, Vol. 6) Feb. 1971,
55-82.

D. A. Huffman, "A method for the construction
of minimum redundancy codes," I.R.E., 40, 9,
Sept. 1952, 1098-1101.

C. C. Foster and R. Gonter, "Conditional
Interpretation of Operation Codes," IEEE-TC,
Jan. 1971, 108-111.

E. C. R. Hehner, "Computer design to mini-
mize memory requirements," Computer, 9, 8,
Aug. 1976, 65-70.

E. C. R. Hehner, "Information Content of
Programs and Operation Encoding," JA(~I, 24,
2, Apr. 1977, 290-297.

B. S. Brawn and F. G. Gustavsen, "Program
Behavior in a Paging Environment," AFIPS
Proceedings, 33, FJCC, 1968, 1019-1032.

P. J. Denning, "The working set model for
program behavior," CACM, ii, 5, May 1968,
323-333.

K. R. Kaplan and R. O. Winder, "Cache-based
Computer Systems," Computer, 6, 3, March
1973, 30-36.

D. H. Gibson, "Considerations in Block-
Oriented Systems Design," Proc. SJCC, 1967,
pp. 78-80.

R. M. Meade, "Design Approaches for Cache
Memory Control," Computer Design, i0,
January 1971, 87-93.

T. Kilburn, D. B. G. Edwards, M. J. Lanigan,
and F. H. Summer, "One-level Storage
Systems," IRE Trans. Elec. Comp., ii, 2,
1962, 223-235.

P. J. Denning, "Virtual Memory," Computing
Surveys, 2,3, 1970, 153-189.

B. Randell, "A Note on Storage Fragmentation
and Program Segmentation," CACM, 12, 7,
July 1969, 365-369.

34.

35.

36.

Table i.

Table 2.

C . J. Conti, "Concepts for Buffer Storage,"
Computer Group News, 2, March 1969, 9-13.

S. H. Fuller, V. R. Lesser, C. G. Bell, and
C. M. Kaman, "The Effects of Emerging
Technology and Emulation Requirements on
Microprogramming," IEEE-TC, 25, i0, Oct.
1976, 1000-1009.

W. D. Strecker, "Cache Memories for PDP-Ii
Family Computers," Third Annual Symposium on
Computer Architecture, 1976, 155-158.

x\- ~0 2o 3o

5 37.7 59.1 73.6

10 29.1 47.7 61.3

15 23.7 40 52.6

20 20 34.4 46

25 17.3 30.2 40.9

30 15.2 27 36.8

Percentage increase in the average DIR
instruction interpretation time due to
using the DTB as a cache on the level-2
memory.

x~ d I0 20 30

5 78.8 92.4 101.6

I0 60.9 74.6 84.7

15 49.6 62.6 72.6

20 41.9 53.9 63.5

25 36.2 47.3 56.4

30 31.9 42.2 50.8

Percentage increase in the average DIR
instruction interpretation time due to
not using the DTB.

77

High Level Representations

, <

and PSDER'S o o~ a ~- ~ o ~ ~ ~=" Se~ntic =o ~ ~ o ~ o

Decreasing uxecution time
Decreasing program size
Decreasing compile time
Increasing interpreL'r size

Expanded / Degree of encoding
P Machine

Language Increasing execution tim
Representation Decreasing program size

Increasing compile time
Increasln E interpreter size

Intcrr~diate
Leve 1
Representat ions

Figure I. The space of program
representations.

Figure 2. Organization of the

Dynamic Translation

Buffer.

Associatlv ̂ Address Array

Associat ~ve
Tag Array

Set
selected
by hashing -~ I
DIRadd i ~

[
DIR address

Comparat crs

Address Replacement
Array Arra

~ltlplexer

Unique Buffer Array address
selected by comparators or ~s :~p l i~aeemcnt Logic

Unit of
Buffer Array
allocation

t Primary Buffer
Array

I Secondary
Overflcv
Array

Buffer
• Array

78

I i

Dynamic 1 Trans l~tion
~uf fer

I I

F
I
I
I
I

Level I
Memory [

I
l
I

I , 1
Inst nlct ion

Fetch
Unit

' I I ,

~o~trootioo ' ' ' I ~ l o o l
Unit I] [I U n i t 2

I

I
Datapaths, functiorml units [
and registers of the

J Universal Host Machine

f I I

Level 2 }
~mory

Figure 3. Organization of the Universal
Host Machine.

Figure 4. Flow diagram for the INTERP
instruction.

iNTERP

I Pres~
addr~
the I

nt DIR I ss to
TB

I 1 instruction from
the L~,vel 2 memory

J ~,code Dill]
instruction and
generate P~eDER
t ~anslation

, J

Store translation
at DTB location
specified by the
Replacement l~gic.
Return overflow
blocks used by the
translation that is
being replaced and
request overflow
blocks if needed
for this translated
DIR instruction

i
Transfer program]
control to the first
instruction in the
newly created
PSDER sequence

l
Transfer program
control to th~ IYEB
address specified
by the Associative
Address Array

79

