3D-9

constituent statements had valid, complete code.

2ZD3B Recursive Function Calls

Since the actions of the code created by a node are being done
as that code is being constructed, some side effects of that execution
may be expected to occur. In particular, recursive use of a specific
node which has not completed creating code at some previous level of
recursion can cause a problem. The program given previously

in figure 3B2-1 will illustrate the difficulty.

The first time that the statement
F+ A+ B * A;
is executed, B is called by the VALC(aB) node and B, during its exe-
cution invokes F (but only once). So the expression A + B * A portion

of the parse tree will be in the state depicted by figure 3p3-] :

ADD: ({A},valc(A))

valid,incomplete

© VALC(aA) : ({A},valc(A)) MULT :
valid valid
complete incomplete

VALC(aB): ({B},call(B)) VALC (aA):
valid
incomplete

Figure 3D3-1: Partially Executed Parse Tree for A+B*A

Since the ADD node has incomplete code, that code is thrown
away, and ADD begins blindly reinterpreting. VALC(oA), having valid,
complete code will simply execute that code and return to ADD, MULT
then meets the same fate as ADD and so,in turn does VALC(aB). VALC(aB)
then causes B to be called recursively. This time B will return a
valué without calling F again, so the VALC(aB) node can finish at this
level; it produces code "ctype(real)" to check that the value returned
is of type real (for possible future executions). FExecution then pro-
ceeds as in the previous examples.

But there is still the previous incarnation of B to deal with:

3D-8

a problem: if the IF-expression has the value true, only the THEN-part
should be executed, and if it has the value FALSE, only the ELSE-part
should be executed. Since only execution causes compilation of code,
if just the ELSE-part were compiled, then, were the THEN-part ever
needed, it would not be available. And even if it could be acquired

at that time, to acquire its code at the level of the IF-statement
would require splitting the previously acquired IF- and ELSE-code to
insert the THEN-code between them. This in turn would cause prob-

lems with control jumps in the code - such complicated solutions are
not appealing! Also, because we are dealing with interactive systems,

we would like to be able to execute incomplete programs, and such @ Proe
grad could be missing a THEN- or ELSE-part of an IF-statement. If that
branch of the program were not needed until later in the development

of that particular program, then attempting to ''compile'" it, even if it were
not there, would rob the system of some flexibility since the user

would necessarily have to insert it at that time.

Ilence we must have an alternative which will allow a node not
to acquire code from its subnodes if they have none (by reason of not
having been executed), but which will allow the code to float up once

it is all available.

Dividing the COMPLETE_CODE action into parts will accomplish
this. The first action marks the code at the currently active node
as complete. The second action is given explicitly by a non-terminal
node and asks to acquire the code of a specific subnode, if it has
any, Thus, the IF-statement could check whether the non-executing
part (THEN or ELSE) had code. If it did, then the IF-statement node
routine could ask to acquire all its sons' code sequences since they
would then be available. A switch sent to CODE as a parameter could
be used to mean ''execute but do not store' so that the IF-statement
could decide not to produce any code (which might be incorrectly ac-
quired by its parent node) unless both the IF and TIEN subtrees had
themselves acquired code.

A construction such as "BODY'" in the SLICE grammar would also

have this property so as not to pass code up until each of its

3D-7

MULT. 2 PERFORM *2 VALC(aA) : ({A},
valc(A))
VALC(aA) .0 since the code is valid, it is

executed and control and code are
returned to MULT

A ADD.3 B' A MULT:({B',A},
valc(B)'valc(A))

MULT. 3A PERFORM CONVERT
A ADD.3 B' A MULT.4

CONVERT: assume that CONVERT changes B' to be of
same type as A using code convert and then

returns;
A ADD.3 By A MULT:({B}A},
A valc(B)'valc(A)
convert)
MULT. 4 CODE (multiply top

two stack items) A ADD.3 B' *A MULT:({B',A},
valc(B)'valc(A)
convert mult')
MULT. S COMPLETE_CODE A B! *A ADD:({A,B'},
A valc(A)valc(B)'
valc(A)convert
mult')

For the example it was assumed that the value of B on the stack was

converted to be the same type as A (i.e., the same type as B was pre-
viously), so ADD will produce the same code as it had before. Thus,

the sections of the tree which might have required a change of action
we reinterpreted, while those not affected by the semantic change sim-
ply executed their valid, compiled code. Such a feature has obviously
high value is we picture one of the VALC(cA) nodes being replaced by

an entire program block which escaped reinterpretation.

3D3 The TFI Method for Some Classes of Statements

This section simply contains a small collection of "implemen-
tation-type' problems encountered in implementing the TFI algorithm
for some classes of statements,

3D3A IF ... THEN ... ELSE

Using the TFI algorithm for an Algol-type if-statement causes

3D-6

stimulus: only code dependent on B will be reinterpreted. Any new
code or dependency will be denoted in the following execution trace
by a prime (') attached to the element. All other notation is the

same as previously.

Executing Routine Operation Stack Tree Nodes
and Line
ADD.O code is found invalid when ADD node is PERFORM=~-ed

and is then discarded and reinterpretation is
initiated by calling the ADD routine;

ADD.1 PERFORM *1 ADD.2 VALC(aA): ({A},
valc(A))
VALC(aA).O code is found valid and is executed
and control returns to ADD which
acquires the code
A

Since the VALC(oA) node's code is valid, it is simply executed; re-

interpretation is not necessary.

ADD. 2 PERFORM *2 A ADD.3 MULT:({B,A},
valc(B)valc(A)
mult)

MULT.O code found invalid and discarded
MULT:
MULT.1 PERFORM *1 A ADD.3 MULT.2 VALC(aB):({B},
valc(B))
VALC(aB) .0 code found invalid and discarded VALC(aB):
VALC (aB) . 1 CODE (B to stack)
- copy and param- VALC(aB): ({B'},
etrize code valc(B)')
- execute code A ADD.3 MULT.2 B'
VALC (aB).2 COMPLETE_CODE A ADD.3 B' MULT:({B'},
valc(B)')

For the first time in this process, the actions and result on the
stack are really different than when the expression was originally

interpreted.

the level of the ADD node, and will continue to rise and become im-
bedded in ever longer strings of code until some scheme causes it to
halt (at the statement level for instance). This method of conbining
an FI with parse tree interpretation we will call a Tree Factored In-

terpreter or TFI.

The next time that the ADD node is to be executed, the compiled
code is used if it is still valid. The manner in which validity is
mzintained and determined needs to be discussed. One of the primary
data structures in an IPS is the symbol or name table, which associ-
ates the print name of a variable with information needed to obtain
its value, and more importantly, semantic information about the var-
iable. This semantic information can be composed of quantities such
as type (e.g., real or integer), scope (e.g., local or global), struc-
ture (e.g., array or scalar), and so on. It is the constancy of this
information over a period of time which allows the code produced by

an FI or a TFI to be re-executed.

One way of determining code validity is to scan all nodes of
all parse trees to find any code which depends on some variable, when-
ever the semantic information for a variable is changed, and to mark
such code invalid. This will work in simple cases, even though ter-
ribly inefficient, and is prescnted herc only as an example of a
method for checking the validity of compiled code. An efficient and
complete algorithm is developed in chapter 4.

3D2 Movement Between Interpretation and Compilation

One of the points previously made about the TFI
was that it allowed a reasonably smooth flow between interpretation
and compilation. The interpretation to compilation direction has been
demonstrated, and we will show here what happens in the opposite di-
rection when some semantic change forces reinterpretation of previous -
ly compiled code. The algorithm is efficient and reinterprets only
what has been (potentially) affected by the semantic change.

We will assume that the semantics of B are changed and show

how the previously interpreted tree for A + B * A responds to this

3D-4

For the first time, the calling routine (MULT) has a non-empty depen-
dency set and a non-empty code buffer. The subnode's dependencies
{A}are united with its parent's dependency set {B} to get {B,A}; and
VALC(aA)'s code valc(A) is concatenated to the MULT node's code buf-
fer. The next action by MULT is to produce the code to multiply the

values computed by its sibnodes.

MULT. 4 CODE (multiply top
two stack items)
- copy code into MULT: ({B,A},
buffer valc(B)valc(A)
- execute code A ADD.3 B*A|mult)

Not only has MULT completed its action at this point, but it also has
compiled code to do the actions of its entire subtree without reinter-
pretation. If any node in the tree is executed and all its subnodes
(or subtrces) acquire valid compiled code by executing, then that node
can acquire that quality also. In this way, if all the program and
its variables were to remain semantically constant (at some level of
semantics such as the types of variables, as opposed to their values,
for instance), then the executed portions of the program would have
compiled code for future executions. It is this which represents the
automatic movement from interpretation to compilation. Movement in
the opposite direction will be described later. The evaluation contin-

ues with MULT returning code to its caller, ADD:

MULT.S5 COMPLETE_CODE A B*A| ADD: ({A,B},
valc(A)valc(B)
valc(A)mult)

ADD. 4 CODE (add top two

stack items)

- copy code ADD: ({A,B},
valc(A)valc(B)
valc(A)mult add)

_ - execute code A+B*A
ADD.5 COMPLETE_CODE - at this point the ADD node's cal-
ler can acquire its code.

Finally the code for the entire expression A + R * A has floated up to

3D-3

as is A above. At this point ADD, by invoking its *1 node (see figure
3B4-2 for a diagram of the parse tree for A + B * A) using a PERFORM
action, has specified that any code produced by that node is also to
be placed in the ADD node's code buffer when control returns to ADD.
The code is passed back to ADD when the VALC node invokes COMPLETE__ —
CODE :

VALC (0A).2 COMPLETE_CODE A|ADD: ({A},
valc(A))

COMPLETE_CODE does the following:

(1) mark the code of the currently active node (each node has its
own code buffer) as valid and complete (these are two separate
flags associated with each node);

(2) 1if this routine was invoked by a PERFORM, then add its code to
that of the calling routine, and unite its dependency set with
the calling node's (in the.above case, all that happens is that
ADD gets VALC's dependency set {A} and its code valc(A));

(3) return control to the calling routine, passing back any value

left on the stack (A in this case).

ADD. 2 PERFORM *2 A ADD,3|MULT:
MULT.1 PERFORM *1 A ADD.3 MULT.2| VALC(aB):
VALC(uB).1 CODE(B to stack)
- copy and param- VALC(aB): ({B},
etrize code valc(B))
- execute code A ADD.3 MULT.2 B
VALC(aB).2 COMPLETE_FODE A ADD.3 B! MULT: ({B},
valc(B))

At this point, MULT acquires the code and dependency set of its *1
subnode, VALC(aB)

MULT.2 PERFORM *2 A ADD.3 B MULT.3| VALC(cA):
VALC(aA).1 CODE (A to stack)
- copy and param- VALC(aA) : ({A},
etrize code valc(A))
- execute code'_ﬁ__ ADD.3 B MULT.3 A| —
VALC(aA).2 COMPLETE_CODE A ADD.3 B A| MULT: ({B,A},
valc(B)valc(A))

3D-2

ADD:
PERFORM *1;
PERFORM *2;
3 IF TYPE OF (TOP_OF (STACK)) # TYPE_OF (SECOND_OF (STACK))
3A THEN PERFORM CONVERT;
4 CODE(add top two stack values and replace them by their sum);
COMPLETE_CODE;
MULT :

1 PERFORM *1;

2 PERFORM *2;

3 IF TYPE OF (TOP_OF (STACK)) # TYPE OF (SECOND_OF (STACK))
3A THEN PERFORM CONVERT;

4 CODE(replace top two stack items by their product);

S COMPLETE_CODE;

PERFORM is a special form of routine call used to activate the inter-
pretive routine specified in a subnode or a specific interpretive
routine (such as CONVERT above); it will become more important in the

next chapter.

We will again trace the execution of the parse tree for A+B¥A,
also showing the run-time stack and the level of interpretive control.
Only the changes being made to the node which is active are displayed

under the heading Tree Nodes. Execution begins at the ADD node.

Executing Routine Operation Stack Tree Nodes
and Line

ADD.1 PERFORM *1 ADD.2 jADD:

VALC(aA) ;1 CODE(val A to the

stack);

- copy code and VALC(aA) : ({A},
parametrize valc(A))

- execute code
return control ADD.2 A
to VALC node

Now the VALC(aA) node has attached to it the dependency set {A} and the
code string valc(A); only compiled code will be so underlined, and

anything on the stack which is a value will be doubly underlined ()

3D-1

It is impossible to prepare (and execute) code such as

c(jump ahead) c(some other code) (¥1ace to be jumped to)
+

which occurs in the Algol if-statement, without a mechanism to stack
"labels'" as is done in most compilers. Backward jumps are easier if
the interpretive routine can be sure that the code being branched to
will not disappear. The problem of goto's (as used in Algol), in an

FI environment such as we are suggesting, is sufficiently difficult
that we choose to ignore it until some fairly sophisticated mechanisms

have been developed in the next chapter.

Another drawback of an FI is that statements whose scope ex-
tends over more than one line (we are assuming that individual lines
are alterable entities) are difficult to execute. Our next extension
of the FI concept to interpretation on parse trees will provide a more

elegant solution to the problem.

3D Extending an FI to Parse Tree Interpretation

Combining the notions of interpreting a parse tree with the FI
method yields some very interesting phenomena. Among these are a
smoother flow between interpretation and compilation, minimal inter-
pretive overhead when responding to semantic changes, and easy exten-

sion to classical compilation.

3D1 The TFI Algorithm

Ihe explanation of the mating of the FI concept and parse tree
P g P P

interpretation is best explained by redoing the A + B * A example
given previously, with the followiﬁg (slightly altered) ADD, MULT, and
VALC routines to include the code bracket concept of the FI. The
Algol-like notation used is an extension of the SLICE language, which

is given in Appendix A of this chapter.

VALC (aA) :
1 CODE(push the value of A onto the stack);
2 COMPLETE_CODE;

3C-7

act of interpreting the program; thus, itlprovides a simple connection
between one type of interpretation and compilation. Secondly, state-
ments are changeable, and this action may be interlaced with execution
of the program, the only restriction being that a statement which is
being executed may not be changed. The ability to change programs

and the data on which they operate while those programs have been exe-

cuting and using the data we will call dynamic changeability. TIts

counterpart, static changeability is limited to changes which can be

done only when the programs and data concerned are not being used or
are not in any stage of execution. The ability to suspend program
execution by some form of user interrupt and during that suspension
alter program or data structures - while still maintaining the ability

to resume the program - is a good example of dynamic changeability.

If each statement for which code has been created during inter-
pretation has a list of the variables in its dependency sct, then,
whenever the semantics of a variable are changed, one could scan the
entire list of statements and mark as invalid all those having code
which depends on the old semantics of that variable. If no statements
depending on that variable are active, then semantic changes to var-
iables can be interlaced with execution in an FI system, Also, eicept
for a truly active statement, i.e., one which is being executed of
which is in the hierarchy of statements awaiting completion of a called
routine, any statement can be changed. Hence, there is a modicum
of dynamic changeability of programs inherent in what has been de-

scribed so far.

With this method, then, we could handle a system in which var-
iables did not change type, for instance, at arbitrary times during
execution, but which would nevertheless allow typeless or undeclared
variables as are allowed in JOSS, LC2, and APL. As well, the program
could be changed even during program execution, except for active
statements. The BASIC system described earlier fits these constraints,

and could be implemented in such a manner.

There are some other problems with an FI which is operating from

a linear pseudo-code such as postfix.

3C-6

Basically, the idea is thet the actions associated with a
statement, once interpreted successfully, can be kept for future
execution. There are some obvious restrictions on this scheme and
they are largely concerned with the type of semantic changes allowed.
Clearly, since no check is made of the validity of the code for a giv-
en statement, any changes in the semantics of the variables which that
statement uses could mean that the code is not correct. Nevertheless,
such a scheme could be useful in a conversational Fortran system, for
instance, in which variable declarations (e.g., REAL A(20)) were not
alowed to be altered, but in which statements could be changed. Un-
defined variables (variables which have not been assigned a value be-
fore they are used) could be checked, and if no error occurred during
interpretation, code could be created to access the variahle from
that time on. In fact, a variant of this idea has been suggested for

a Fortran system with debugging capabilities [Mit 69].

Since such "interpretively compiled code" is dependent on var-
iables which it uses, some means of denoting (and implementing a check
for validity with) this dependency will be necessary if the code is to
respond to semantic changes in variables. If there were some sequence

Py Py «ox By
of interpretive pseudo-code (postfix for example) and the code for it,
created by an FI is
c(py) clpy) «ov c(py)

which in turn depends on the semantics of a set V={v1,v ..,vk}.of

2*°
variables (hereafter called a dependency set), then we need at least

a mechanism which can decide that unless V is semantically changed,
clpy) clpy) vov clpy)

can be considered as valid code, and take some action if V is changed.

We shall denote such dependencies by simply describing interpretively

compiled code as a pair (V,C), where V is the dependency set of varia-

bles on which the code C depends.

3C2 Incremental Differential Compilation from an FI

The FI method has some interesting, though transparent charac-

teristies. Firstly, the code which is compiled is created during the

3C-5

for each statement to point to the compiled code, if any, and a bit

in each entry to specify whether or not the code for that statement

is valid.

3C-4

we are dealing with s-actions which contain no x-actions within them
and conversely. Thus, any action carried
out and required as part of the execution of an interpreted program
is reflected entirely by the sequence of x-actions performed during

that execution.

This last remark is crucial. If each use of an interpretive
routine for some specific operation of the source program causes a
different sequence of x-actions to occur, then interpretation is
certainly always necessary. For that could only happen if semantic
changes occurred which changed the meaning of the particular operation
of the program each time that it was executed. As has been pointed
out previously, such behavior for all the parts of a program is ex-
ceedingly rare: entire programs do not constantly change even in the

most interactive of environments.

For purposes of explication we will assume that all the parts
of an interpretive routine not marked by ''code brackets' are s-actions.
And each time an x-action is to be performed, a routine called the
CODE routine is invoked. This routine has as parameters the limits and
position of the x-action code; and the place being interpreted in the
source program is known as a global semantics variable. We will as-
sume two levels of interpretation so that another routine, INITIALIZE,

is invoked just before each statement is to be interpreted, and

a routine called COMPLETE_CODE is invoked after each statement is com-
pleted. X-actions may need to have addresses and values substituted
into the code produced, much like macro substitution, and we there-
fore need some means of specifying those parameters. For this ini-
tial outline we will assume that such a mechanism exists and will not

describe it in any detail.

The algorithms for INITIALIZE, CODE and COMPLETE_CODE are given
g
in "pseudo-Algol" in Appendix 3B. All that is required in terms of

data structures for these routines is a pointer in the data structure

actually cause part of the interpreted program to be executed. We
will distinguish these two classes as semantic actions (s-actions)

and execution actions (x-actions).

Figure 3C-1 is a simple
representation of the execution
of a semantic routine in a system
such as FSL. S-actions are de-

noted by directed line segments

and horizontal bars delimit x-
actions. It is important that
this diagram is also represen-
tative of the execution of an
interpretive routine in which
semantics are checked dynamically

possibly depending on execution

parameters, and that in this case

the code within the code brackets

is executed instead of just saved Semantic
for later execution. Normally Action
such distinctions are buried in

; —L—Code
the code of interpreters (and :

Production
compilers also). We will call
an interpreter in which x-actions C ,
J L

are factored out or made disting-

i - ion Fac- A ;
uishable from s-actions a Fac Figure 3C-1: Schematic of the Exe-
tored Interpreter (FI). cution of a Semantic Routine

3C1 Using an FI for Both Interpretation and Compilation

The introduction of factored x-actions provides a link between
interpretation and compilation. Since s-actions do not themselves
affect any action on the part of the program being interpreted, they
can have no direct effect on the program or its data. If a presumed
s-action does cause a change in the control or data environment of the
program which affects its execution, that s-action is factorable into

a sequence of smaller s- and x-actions. Hereafter we will assume that

3C-2

between compilers and interpreters.

As discussed earlier, interpreters are mainly used when the
semantic content of a program can vary during execution due to changes
in variables, meanings of operators, or changes in the program text
itself. However, the purposc of debugging some representation of an
algorithm is to fix the program and data which describe it in such a
way that the program 1s a valid statement of that algorithm
over some domain of data. It is reasonable therefore to expect that
more and more of a program remains constant as it approaches correct-
ness. This is not always the case since there are some algorithms
which may modify themselves, but even in these cases there is probab-
ly some portion of the program which is constant, namely, the part
that is modifying the rest of the program. If we could so arrange
matters that constant parts of the program become compiled - in the
sense that R is performed on them only when they vary, and remains
fixed when they and their associated semantics remain fixed - then
we would have a connection between the spectral extremities of inter-

pretation and compilation.

In compiler systems, the semantics R is decomposable into two
parts: semantic analysis and code production. That is, some set of
semantic information is used by R to determine which of a variety of
explicit actions is required to perform an operation (for instance, an
add). The semantic portion of R may also access and change a class of
variables not connected with the execution of the progrém but only with
its translation; these are normally called compile-time variables.

The object code for the selected explicit actions is then created by
a (possibly) different set of constructs in the compiler. In FSL

[Fe 64] "code brackets" surround object code which is to be created.
This code is parametrized by using compile-time variables to contain
the addresses of run-time quantities. Indeed, one of the main contri-
butions of FSL was the realization that many of the same facilities
are necessary at both compile and run-time: the code brackets simply
qualify the time at which an action is to occur. The same distinction
can be made in an interpreter between actions which are done solely

for the sake of interpretive control and information and those which

3C-1

eaéh routine then handles control by deciding whether and in what or-
der its subnodes should be "executed" by calling them. And not only
is control distributed throughout the tree, but each X-routine such as
ADD also has a fair bit of structural syntactic and semantic informa-

tion locally available through its subnodes.

3C Factored Interpretation

A compiler system for programs in a language L on a machine M
can be viewed as having the following components:

(1) a syntax analyzer, or parser, P, for the strings of L into

some intermediate language L, (i.e., P: L —» Lp);

(2) a set of semantic routines, R, which maps LP into a run-

time language LR;

(3) a set of run-time support routines E which together with

K can execute LR programs on M (and therefore can execute L

programs on M).

Now, let s:sl;s ;"';Sn’ SeL (the Si are the statements in S). Then,
for a compiler system, the execution of S on M can be described as

E(CR(P(S)))

E(R(P(Sy3S,3 .+ +35,)))

E(REP(Sy §Sy3vw i5,))

E(RoP (S1)3RoP (S5)5- -« RoP (S))

That is, we can distribute the language translation process (or com-

pile-time as it is commonly called) over the program, after which E
is applied to the translated program. Here we are speaking of E as

the hardware and software needed to execute an Lp program.

The same is not generally true in an interpretive system where
P may be pre-applied to S, but R is applied at the same time as E;
i.e., the process is grouped as
E°R (P(8,);P(S,)3..+5P(S).
Thus, the number of times R is applied to Si in an interpreter is pro-
portional to the number of times that S, is executed, whereas R is
applied only once to each Si in a compiler system. It is this simple

distinction which accounts for the difference in run-time efficiency

3B-12

Now, let us trace the execution of the parse tree int the same
manner as done previously for its construction, noting the order in
which operations are performed. The stack used to hold intermediate
values can also be used to record the control in the parse tree, i.e.,
the calls made on subnodes. The notation ''mame.k' in the stack stands
for the information necessary to return control to the routine ''mame"

at line k when the called routine returns.

Executing Routine Operation Execution Stack
and Line
ADD.1 call *1 ADD.2
VALC(cA).1 place value of ADD.2 A
A on the stack
VALC(aA) .2 return value A
ADD.?2 call *2 A ADD.3
MULT.1 call *1 A ADD.3 MULT.2
VALC(aB).1 place value of A ADD.3 MULT.2 B
B on the stack
VALC(aB).2 return value A ADD.3 B
MULT. 2 call *2 A ADD.3 B MULT.3
VALC(oA).1 place value of A ADD.3 B MULT.3 A
A on the stack
VALC(aA).2 return value A ADD.3 B A
MULT. 4 multiply A ADD.3 B*A
MULT. 5 return value A B*A
ADD.4 add top two A+B*A

stack items

- -r - A
ADD.5 return value A+B*A

The order of operations, listed linearly, is

VALC(aA) VALC(aB) VALC(cA) MULT ADD
which is just the Polish postfix for the expression: thus, this method
of using parse trees as the control for an interpreter can mimic in-
terpretation of postfix notation. It is important also to note that
only a single stack is necessary to maintain interpretive control and
the values being computed. In fact, the interpreter's F-level really

does nothing except call the routine indicated by a certain node, and

3B-11

3B5 Interpreting Parse Trees

We previously showed three methods of program inter-
pretation: from source text, lexically scanned text, and parsed
text (postfix). One can also interpret a parse tree of the type in

figure 3B4-2 above.

Consider each node of the tree, whether terminal or non-termi-
nal, as the name of an interpretive routine to be called to accomplish
the action required by the node which contains its ''mame!' Each sem-
antics routine called has access to its subnodes (if any) as the names
*1, *2, etc. from left to right. Considering just the parse tree in
figure 3B4-2 for the expression A + B * A, we can describe the action
of each of the routines named in that routine in the order of execu-

tion, starting at the root of the tree, the ADD node.

ADD:
1 call *1 to execute;
call *2 to execute;
3 check the top two values on the stack, performing any neces-
sary conversion to make their types compatible;
add the top two stack values and replace them by their sum;
return the value on the top of the stack as the value of the
ADD routine at this node.
VALC(aA) :
1 push the value of A onto the stack (the value is obtained
by using the parameter cA in the nodal information);
2 return with the top of stack item as the value of the node,
MULT:

1 call *1 to execute; (i.e., the node VALC(aB))
call *2 to execute; (i.e., the node VALC(aA))

3 check the top two stack items and perform any necessary con-
version;

4 replace the top two stack items by their product;

return the top of stack value as the value of the MULT routine

3B-10

Rule and Depth Action Stack Tree
[head~]
EXP
TERM
FACTOR
PRIMARY .ID oA
:VALC aA VALC
nm al 1: VALC(aA)
FACTOR
TERM
EXP
EXP
TERM
FACTOR
PRIMARY .ID al oB
:VALC al oB VALC
[1] al a2 2: VALC(aB)
FACTOR
TERM
FACTOR
PRIMARY .ID al a2 oA
:VALC al a2 oA VALC
[1] al a2 a3 3: VALC(aA)
FACTOR
TERM :MULT al a2 ad MULT
[2] al a4 4:/29&{\\
2 3
EXP :ADD al ad ADD
[2] as 5:;3&1\
1 4

Thus the final parse tree for A + B * A is

ADD

P ee

VALC (ap) MULT

VALC(aB) VALC(aA)
Figure 3B4-2: SLICE Parse Tree for A + B * A

and we will make extensive use of this in the remainder of this chap-

ter as well as the next.

3B-9

insteaa of: BODY

STMNT BODY

STMNT f

STMNT .EMPTY

Since the "$" is acting very much like a counting mechanism
anyway, we allow ".$" to be used to request counting of the
repetitions and allow "§" to be used in the output brackets.
Thus, the BODY rule becomes

BODY = STMNT .$(";" STMNT) :BODY[1+$] / .EMPTY :BODY[0];

The output brackets are written as [1+$] to indicate that the
first STMNT (which is not in.the range of the ".$'") is to be
output as a subnode as well.

Thus the SLICE rules

FACTOR = "-" FACTOR :NEGATE[1] / PRIMARY;
PRIMARY = .ID :VALC[1] / .NUM :LITC[1] / "(" EXP ')";
applied to the string '-A" would produce the following stack trans-

formations and tree creation:

stack tree
al
alA VALC
al 1 VALC(cA)
al NEGATE 2 : NEGATE
1 VALC (aA)
ol

The rules for EXP, TERM, FACTOR, and PRIMARY (in figure 3B3-1) together
applied to "A + B * A" would result in the following sequence of

actions:

by a identifier) onto the stack.
(2) A simple '":name'" construct places 'name' on the stack.
(3) The construct [n] (where n is a numeric constant) creates
a tree whose root is the item on the top of the stack, with n
items as that node's subnodes, in order from right to left
from the second item on the stack down; then (n+l) items are
popped from the stack and a reference to the created tres re-
places them.
(4) A [1] following a .ID in a rule will cause the address
of the symbol table address for the identifier to be placed
in the created node itself rather than making an extra node.
Thus, in the PRIMARY rule (figure 3B3-1),
.ID :VALC[1]
will produce a node such as
VALC(o identifier)
and not
VALC

o identifier

as would normally be the case with such a construct.

(5) Lastly, we generalize the [n] construct to allow the
creation of trees whose number of subnodes is determined by
the use of the grammar. This situation arises when one has a
rule such as

BODY = STMNT $(';" STMNT) / .EMPTY;
and would like to make each of the STMNT's a direct subnode of

the body node instead of a right-recursive binary tree: i.e.,

BODY

STMNT STMNT ces STMNT

3B-7

The allowable segments, or partial statements, in the SLICE-grammar
are defined by the non-terminals PROG, FDEF, STMNT, BODY, THENST,
ELSEST, FNAME, HEAD, and TAIL. Hence, the SLICE program

BEGIN
IF A =B TIEN A « B +
C;

END

is invalid because an EXP such as B + C cannot be split across lines.

3B4 Sample Parse Tree for a SLICE Statement

In this section we will show how the parser works on the
statement F « A + B * A, which is statement 1C2 in the sample pro-
gram in figure 3B2-1. The parse tree for this statement is the fol-

lowing, generated from the SLICE grammar above :

ASSIGN
DESC(aF) ADD

VALCTaA) MULT

VALCf:;:/\\;::E(aA)

Figure 3B4-1: Parse Tree for F « A + B * A

The MULT node was created in the TERM rule of the SLICE grammar using

the Tree-Meta construct :MULT[2] which means the following:
output a tree which has as its root node, MULT, whose right
subnode is the item on top of the stack, and whose left sub-
node is the item immediately below the tope of the stack.
Then pop the stack twice, and push a pointer to the created
tree onto the stack.

Itens are placed on the stack in five ways:
(1) A lexical routine such as .ID places a reference to a

symbol table entry for identifiers which it collects (denoted

3B-6

these operations, of course, require some care in writing the incre-
mental grammar, but few complications arise if the set of potential
dangling non-terminals is reasonable. Also, these methods require
that certain nodes of the parse tree be marked as being associated
with a line of text - they are exactly the mated nodes. It is also
reasonable to keep the text for the lines attached to the mated node

for that line, and we will assume this hereafter.

3B3 SLICE: A Small Language for Interpreter/Compiler Examples

In order to have some specific base for many of the algorithms
which follow, we have constructed a grammar for a language called
SLICE and have described it in Tree-Meta. In fact, we shall extend
SLICE throughout the next chapter in order to deal with some more
difficult problems of an IPS. This extension will be manual for the
most part, although we will later touch upon some problems posed by

extensibility in an interactive environment.

PROG = HEAD FDEFS BODY TAIL :PROG[4];
HEAD = "BEGIN" :BEGIN[0];
TAIL = "END" :END[0];
FDEFS = .$(FDEF ";") :FDEFS[$];
FDEF = "FUNCTION" .ID :FNAME[1] ";' BODY TAIL :FDEF[3];
BODY = STMNT .$(";' STMNT) :BODY [1+$] / .EMPTY :BODY[0];

STMNT = ((.ID ":" .§(.ID ":") :LABELS[1+$] SIMPST :LBSTMNT[2]
/ SIMPST) :STMNT[1];

SIMPST = ASSIGN / EXP / IFST / COMPOUND / GOST;
ASSIGN = .ID :DESC[1] "« EXP :ASSIGN[2];

IFST = ("IF" EXP "THEN" (STMNT :THENST[1]) "ELSE"
(STMNT :ELSEST[1])) :IFST[3];

COMPOUND = HEAD BODY TAIL :COMPOUND[1};
GOST = "GOTO" .ID :GOTO[1];

EXP = TERM ('"+" EXP :ADD[2] / "-'* EXP :SUB[2] / .EMPTY };
TERM = FACTOR $("*" FACTOR :MULT[2] / "/'" FACTOR :DIVD[2]);
FACTOR = "-'" FACTOR :NEGATE[1] / PRIMARY;

PRIMARY = .ID :VALC[1] / .NUM :LITC[1] ? "(" EXP ")" ;
Figure 3B3-1: The SLICE Grammar

