3B-5

"END]' ''FOR <for-listx'" '"DO <statement>" and so on. If we also demand
that the scope of certain language constructs such as block structure
be indicated by the numbering of the program as outlined above, we

achieve three things:

(1) with little trouble we can alter a parser to handle inc-
remental segments and link them together correctly [Li 70,
Wu 70];
(2) correct writing of programs, with respect to program
structure, is encouraged by this method; and
(3) with very little work beyond that needed for (1) above,
a prompting parser can be constructed which prompts the user
for the next allowable segment, whenever its structure is
unique and can be determined by the statement numbering and
the state of the parser.
In section 3B3 we will define a small language which will be used for
examples in the thesis; and we will define the set of allowable non-

terminals as segments for that grammar, and give examples of its use.

Wulf [Wu 70] has described a method for cementing ‘together
incomplete program segments, using the numbering rules and segmenta-
tion just given. Basically, the parser is given a set of non-termi-
nals which may be used as segments. Whenever a statement is parsed
which requires but does not have such segments, they are left '"dang-
ling" in the parse tree and are threaded on a list in an order inverse
to the numbers of the lines from which they dangle. If a line is
entered which matches that segment, then they are hooked together,
provided that the line numbering for the two segments is consistent.
This last requirement simplifies the parser problem, since the line
number (or its lexical position-plus-indentation) uniquely specifies
the set of dangling non-terminals in the thread with which it can be
mated: no match means there is a temporary syntactic error (it may
not necessarily be permanent), which is just another form of dangling

non-terminal which may later be connected correctly.

Deleting a segment simply places the non-terminal on which it

hung back on the thread of dangling/suspended non-terminals. All of



3B-4

is made to perform a useful service.

1 BEGIN
1A FUNCTION B;
1A1 IFN#0
1A1A THEN B + F
1A1B ELSE B +« 0
1B END
1C FUNCTION F;
1C1 N+ N - 1;
1C2 F+ A+ B * A;

1D END
1E N « 1;
1IF A« 1;
1G F;

2 END

Figure 3B2-1: Hierarchical Statement Numbering

If we call each number or character in a
label a "segment," then the depth of a statement in the lexical hier-
archy is exactly equal to the number of segments in its label. Ilence,
1A1A is at level 4 in the hierarchy; its parent is 1Al1, and its suc-
cessor at the same level is 1A1B. Later we will show how we propose
to connect the labelling of statements with the ability of a parser

to handle incomplete programs. It must be stated that such numbering,

the user; indeed, correct indentation is probably more useful to him,
and if used consistently could obviate the need for BEGIN and END in
Algol for instance.

Recent research into incremental parsing [Li 70] has shown
that allowing segments of text to be incrementally parsed with no
constraints on the type of allowable segments can be very expensive,
Wulf [Wu 70] suggests the use of some specified set of non-terminals
of a language as allowable segments. Such a set for Algol might con-

tain statement segments such as "IF<exp>/' "THEN <statement>'' ''BEGIN;'



3B-3

3B2 Adaptation of Tree-Meta for an 1PS

Among the properties often stated as desirable for the writing

of programs in an IPS are the following:

(1) the ability to enter the text of a program in any order,
and to delete, insert, or change statements of the program
without having to restart execution of the program from
scratch;

(2) the ability to interlace program execution and modifi-
cation of the program as an aid to debugging;

(3) the program, being subject to change must also be sub-
ject to review; thus the user must be able to display the
existing text of his programs;

(4) the program is amenable to change and editing within the
system itself; put another way, the program is data of the

language.

This list is not exhaustive, but it supplies enough constraints to
allow us to attack the problem of adapting a Tree-Meta parser to the
requirements of an jnteractive system. Behind the above properties
lie some more fundamental facilities which programs and programmers
of an IPS need.

If text is to be changeable, then we must have a means of
talking about a particular statement. The ability to peint with a
light pen on a CRT display, say, does not completely fill this re-
quirement since programs must also be able to reference elements (it
is, after all, programs which will be manipulating them, even in the
light pen situation). Thus, some scheme of numbering or indexing is
necessary. Since programming languages often have a hierarchical
lexical organization - such as the block and compound statements of
Algol - and since we intend to map programs into a tree structure, we
will use a tree labelling device similar to Dewey decimal, which device
was developed by Engelbart et al [EER 68] and has proven useful. Fig-
ure 3B2-1, a simple program, is an example of this labelling scheme.
Notice that, by interspersing numeric and alphabetic characters in a

label, no decimals are needed and the space normally taken by them



3B-2

they are separated by a '/" in Tree-Meta instead of the "|" used in
BNF. The "§'" means ''zero or more occurrences of the following"; and

.ID, .NUM, and .EMPTY represent pre-defined syntactic entities (iden-
tifiers, numbers, and the nil element).

Using this grammar, the parse tree corresponding to the ex-
pression A+B*A is

EXP
TERM EXP
FACTOR TERM
PRIMARY FACTOR FACTOR
A + PRIMARY PRIMARY
|

B * A
Figure 3B1-3: Parse Tree for A + B * A

This form of parse tree contains much more information than is need-
ed for our purposes, and Tree-Meta allows one to create a parse tree

such as the following, from the same grammar (with some added frills):

Figure 3Bl-4: Simplified Parse Tree for A + B * A

The reader is referred to [EER 68] for a description of the mechanism
for accomplishing this transformation. For our purposes, we will use
this operator-oriented tree representation since it is readily adapt-

able to the use to which we wish to put it, namely executing programs.



3B-1

3B Using a Parse Tree to Drive an Interpreter

We have seen in section 3A a number of different methods of
interpretation, at different levels: source, lexically scanned, and
parsed representations of statements. Now, we will speak of inter-
preting parsed statements, but instead of representing the parse in
postfix notation, we will use a parse tree. Parse trees provide a
fairly well understood means of viewing the structure of statements

in a context-free language.

IRl Tree-Meta Parser

Parse trees may be produced and represented in a number of
ways. The Brooker-Morris system [BM 62] and more recently a meta-
compiler system called Tree-Meta [EER 68] have used parse trees as an
intermediate representation of a parsed program for compiling purposes.
We propose to use parse trees in an IPS to provide the ability to in-
terpret and compile programs within one system. First, however, we
will give a very brief outline of the Tree-Meta parser and its exten-

sion to an interactive environment.

The following BNF [Na 63] describe a small expression syntax
in much the same class as that given in the Algol 60 report.

cexp> ::= <term> + <exp> | <term> - <exp> | <terms

<term> ::= <factor> | <factor> * <term> | <factor> / <term>
<factor> ::= <primary> | - <primary>

<primary> ::= <identifier> | <numbers | ( <exp> )

Figure 3Bl-1: BNF for Small Expressions

This can be written in the Tree-Meta format as

EXP = TERM ( "+'" EXP / "-" EXP / .EMPTY );
TERM = FACTOR $( "*" FACTOR / "/" FACTOR );
FACTOR = "'-'" FACTOR / PRIMARY ;

PRIMARY = .ID / .NUM / " (" EXP ")";

Figure 3B1-2: Syntax for Small Expressions in Tree-Meta

In this notation, parentﬁeses have been used to group alternatives;



3A-5

3A2B Polish Postfix as Used in LC?

In the APL system, relatively little time is spent parsing

statements as compared with executing actions. This is due primarily
to (1) the emphasis on array-oriented operations, and (2) the simple
expression syntax of APL. The o syntax [VZ 69] is more complex
than APL's and it is not a language oriented toward array operations.
Thus, LC2 is interpreted at a lower level than that of APL, namely, at
a point after the level of parsing. LC2 statements are parsed as
they are entered into the system. The result of this parsing is a
string of interpretive code which is essentially a form of Polish
postfix notation [RR 64]; this form of code is well suited to a stack
discipline for its execution. For example, the Polish postfix (here-
after called simply "postfix') for the expression A+B*A is A B A * +
which is read from left to right and can be interpreted as the fol-
lowing sequence of operations:

(1) push the value of A onto the stack;

(2) push the value of B onto the stack;

(3) push the value of A onto the stack;

(4) multiply the top two items on the stack together and

replace them by the value (B*A); |

(5) add the top two items on the stack, thus producing

A+(B*A), and replace them by the result.
Thus, the fetch part of the interpreter paradigm for postfix code is
a very simple left to right scan. The variables are actually repre-
sented by an address - the symbol table address - in LC2 and each
operation, including the placing of the value of a variable on the
stack, is represented by a code number. That code is then used to
get the address of the appropriate routine from a vector of addresses.
The F-level of the paradigm is thus very simple and efficient. The
main cost of interpretation in LC2 is therefore due to the X-level of
the interpretation: the checking of variable types, checking for un-
defined variables, handling subroutine calls, etc. The main costs in
JOSS, by way of comparison, are in symbol table searching and parsing;
and in APL the overhead of interpretation is found mainly in walking

around transition diagrams and doing type checking on variables.



3A-4

of the interpreter which recognizes basic operands as sketched above.
Above each arc in the diagram is the '‘name' of some lexical unit of
the intermediate code of APL\360 statements, and below each arc, en-
closed in a square, is the name of the routine to be executed if that
arc is traversed by the interpreter. The control state of the inter-
preter is defined by a pointer to some node in a transition diagram,
along with a pointer (or program counter) to the next lexical unit in
the statement being executed. The routine to be executed next is de-
termined by picking the arc emanating from the current node whose
associated lexical unit matches the next lexical unit in the statement.
If such an arc is found, the interpreter control is updated to point
to the node at the other end of that arc, and the routine named below
that arc is executed. If no arc label matches the next lexical unit
in the statement, a syntax error is indicated. Where there is only
one arc between two nodes (such as the one between aand B in figure
3A2A-1), the name of a lexical unit may be replaced by the name or
label of a node in a transition diagram (such as EXPRESSION on the
a-B arc). The interpreter will then call itself recursively and in-
terpret from the node named. In the above diagram for instance, BASIC
is called from another diagram containing a node labelled EXPRESSION
and EXPRESSION may be called by BASIC when a parenthesized expression

is encountered.

There are thus two controlling devices for the interpreter:
(1) the intermediate form of the statement being executed,

which is scanned lexical unit by lexical unit from right to
left and which is used to control movement in the transition

diagrams, and
(2) the transition diagrams, which can direct the order in
which actions are performed, and which are actually a syntax

recognizer for the APL language.

Also, there is another level of interpretation at the level of whole
statements in order to accomplish the normal sequencing from state-
ment to statement, as well as explicit transfers of control within the

user's program,



3A-3

put on an execution stack; results of operations are left on the same
stack. Then, whenever an operator or function is encountered, its
left-hand operand will be the next item immediately to its left in the
pseudo-code string. If the item to the left is a right parenthesis,
the current operation is suspended until a matching left parenthesis
is reached during execution of the parenthesized expression. At that
time the operator which was held in abeyance may execute, and be as-
sured that its left operand is on the top of the stack, while its
right operand is immediately below the left in the second stack posi-
tion. Monadic (unary) and dyadic (binary) overators are distinguish-
able by checking if the item to the left of an operator is itself an

operator or not.

In order to make this mode of interpretation possible, each
APL statement which the user enters is divided into lexical units
which are easily distinguishable by a numerical code placed at the
right end of each unit. Thus, vectors are preceded at the right by an
indication of the number of constants in the vector, and its type (in-
teger, real, or character). Also, as mentioned above, identifiers
are replaced in this internal statement representation by pointers to
symbol table entries which in turn have pointers to the locations

where the values of the respective variables are located.

The actual means of controlling the execution of an APL pro-
gram is a device known as '"Conway transition diagrams' [Co 63,BL 68].
A typical diagram from [BL 68] will demonstrate how the F-level of
the APL interpreter works.

VARIABLE

= CONST N EMPTY BASIC

( ) \
=TS
\o -XPRESSIONO @ IE 04—1‘1—51—_0

« [p] &

Figure 3A2A-1: Sample APL Transition Diagram

Figure 3A2A-1 is a simplified transition diagram for that part



3A-2

It is inefficient because most operations involving variables or ref-
erences to program statements require a table search in order to as-
certain the location of that variable or statement, and because exe-

cution entails reparsing the statements each time.

3A2 Interpretation on a Pseudo-code

Since statements in a program are changed infrequently in com-
parison to the number of times they are executed, it seems reasonable
to remove some run-time burden from the interpreter by translating
the source text into an intermediate form for execution. By doing
this, the operations can be indicated by a string of instructions of
"pseudo-code'" for which the F-levelof the interpretation paradigm be-
comes simple relative to the manner in which a system such as JOSS
accomplishes it. Furthermore, if we guarantee that the symbol table
entry for a variable will never be moved (although its value might be),
then this pseudo-code does not require a table search for every access
to a variable, but only an indirect address operation via the symbol
table entry since the code may contain symbol table addresses. Note
that reparsing on each execution of a statement will still be neces-
sary, however, since all that we have done is the equivalent of a

lexical scan on the program text.

The APL\360 system [BL 68] is a good example of an interpreter

which operates at this level.

3A2A APL Interpretation via Transition Graphs

In APL, operators do not have a precedence ordering as they
do in Algol 60 and FORTRAN, for instance. Rather, the following rule
is used:

"every function takes as its right-hand argument the
entire expression to its right, up to the right paren-
thesis of the pair that encloses it.'"*

An implementation of this rule simply involves scanning the pseudo-
code for a statement from right to left. When a simple operand such

as a variable name or a constant is seen in this scan. its value is

* Iverson, K. E. and Falkoff, A. D. '"APL\360: User's Manuay',
IBM, Aug 1968: p. 3.3



3A-1

r g

A A
decide which action
is to be performed
next and update con-
trol information

F: fetch and

A decode
determine which instruction
X-routine performs

this action and

activate it

X-routine X-routine. X-—routinen X: execute action

1 .. 1 " e

)] v ]
Figure 3A-1: The Interpreter Paradigm

the interpreted program, and these routines may be highly intercon-
nected. Some of our results will deal with that set of routines and
how they are structured, while others will be concerned with the
"fetch'" cycle of the pseudo-machine represented by section F of the

diagram.

3A1 Full Interpretation from Source Text

Some interactive systems such as JOSS [Ba66] use the source

text of a program as typed in by the user as the code for the inter-

S L . S
Tom command to command can be

fairly complicated since it involves parsing the input string in or-
der to determine the command sequences. Also, since the X-level of
the interpreter must associate the name of a variable with its value,
a table lookup is required on every use of a variable. This form of
interpretation is the most general and the most inefficient: it is

at the flexibility-inefficiency extreme of the execution spectrum.

It is the most general because changes to the program text by the
user are possible and are automatically recognized by the system since

it uses exactly the same representation for the program as the human.



3-1A

below indicate before and after in a lexical sense; we will only use

before and after to denote time relationships.

3A Simple Model of Interpretation as a Pseudo-Machine

In one sense, an interpreter for a language is necessitated be-
cause the potential complexity of machine code to execute programs
correctly is very large when compared to the operations available on
most computers. Interpreters bridge this gap by simulating the action
of a pseudo-machine whose operations are at a level high enough to
easily handle such run-time complexity, using a fairly simple '"ma-
chine code!" Figure 3A-1 is a model of a simple interpreter. The
n routines at the X-level perform the actions of the pseudo-machine
and the remainder of the paradigm reflects the machine-like control

mechanisms for executing successive instructions.

Some actions such as loops and contreol jumps are performed by
routines which modify certain information of the interpreter such as
the program pointer. Also, most of the complexity of the system is

in the X-routines since that is where the actions are performed on behalf of



3 Interpretation and Compilation in an IPS

Many of the features of an IPS initially appear to demand a large
number of run-time decisions in order to execute programs correctly.
Tyreless variables, the detection of undefined variables and possibly
incomplete programs are examples of such features. Systems in which
much of the semantics of a program is decided at the time of execution
are called interpretive systems. That is, they interpret the meaning
of each action in the program when the time comes to execute it, un-
like most traditional compiler systems in which the entire program is

translated into machine code and then executed.

In this chapter we will make some initial sorties into the pos-
sibility of having a system which is interpretive but also able to, at
least partially, compile code. That is, the system will act interpre-
tively when necessary, but 'produce' machine code for execution so
long as the semantics of the program and its variables remain cons-
tant (with respect to their semantics -- not necessarily their values)
over some period of time. We will refine these notions after an his-

torical sketch of some models of interpreters.

Throughout the remainder of the thesis we will be speaking about
objects which are related in a lexical manner (such as the text of
statements in a program) and events related in time (such as the exe-
cution of statements one after another). In order to distinguish be-

tween these two cases we will adopt the convention that above and



2-11

Indeed, it is well known that two supposedly compatible Fortran com-
pilers on at least one large manufacturer's line of computers do not
execute all programs in the same way. Besides, the verifying pro-
cedure, no matter how informal, must be redone whenever either of

the compiler or the interpreter is changed.

We propose instead to investigate the possibility of obtain-
ing a means of producing a true interpreter which is also a compiler;
i.e., the programs defining the compiler are an integral part of the
interpreter and the same physical instructions are used when inter-
preting a given operation in a source program as when producing com-
piled code for that same program. The next chapter will begin this

investigation.



(program px) = (a valid representation of algorithm x)

And, if the algorithm x is not well-defined, the problem is even more
difficult, The analogy suggests the following: in the act of find-
ing a concrete representation of an algorithm, the variables of that
search, which are programs and the necessary data structures, become
more and more constrained and less variable, the more closely they
approach a valid representation of x. This means that even in an
interpretive system requiring no declarations there will be a ten-
dency for de facto bindings to appear as the program approaches cor-
rectness. That is, the program itself can be expected to change less
and less, and the type and/or structure of variables will be changed
less as the program is debugged. Indeed, such de facto bindings
exist for relatively long periods of time very early in the creation/
debugging process, when compared with execution times, A variable
which initially is used as a number is not likely to vacillate rap-
idly between being a number and naming an entire érray, for instance.

The program-directed prompting for definition of program parts,described
in the section Assumed Control in our evaluation of LC™, causes the

higher level control of a program to become somewhat stable very

early in the development of a program.

Such de facto bindings can be a connection between the spec-
tral extremities of interpretation and compilation. For, if we
could take advantage of them and produce compiled code for executed
program actions, that code could be expected to remain valid and
useable for a reasonable time. The constraint on this, of course,
is that we be able to revert to interpretation should that code ever
become invalid due to a change in any of the bindings on which it

depends and that the user need not be aware of this occurring.

What. form should such an interpreter-cum-compiler system
take? The first notion is to write a separate compiler and inter-
preter for the language with mechanisms to allow mixtures of inter-
preted and compiled programs to execute together. We claim that it
is highly improbable that such an undertaking, for any reasonably
large language, will be successful. It reduces to the problem of
being able to prove, at least to one's self, that two large programs

behave in the same manner on all inputs which each could accept.



2-9

2H Interpretation and Compilation

It has been mentioned that interactive languages must become
efficient and powerful as well as flexible to use if they are to be
of real value to those who use computers for large tasks - such as
building operating systems. And the bootstrapping issue forces this
even more. The problem which remains is how to get efficiency and

flexibility, two ends of a common spectrum, to co-exist,

We first need to understand the extremes; the bulk of this
thesis will then deal with resolving their differences. We define

interpretation as a method for executing programs which determines

the exact effect of each operation in the program by using the con-
text available to it at the time that the operation is actually per-
formed. By context we mean the data space defining the programs and
their data, and the data objects used to communicate within the in-

terpreter itself.

Classically, compilation can be described as the preparation
of a program for executing on some machine wherein the specific ef-
fect of each operation in the program is determined prior to exe-
cution, once and for all, using only the context available at the
time of compilation. These definitions will be made more precise

in the next chapter.

Thus the context within which an interpreter onerates is, in
fact, two separate contexts, that of the interpreter and its control
and semantic information about the program, and that of the program
and its data structures and control. These two may interact, causing
changes in each other; this mutual interaction can also be considered
a distinguishing characteristic of interpretation since a running pro-
gram which was compiled can clearly have no effect on its own compil-
ation since that is already finished. Basically, then, an interpreter
allows a program(mer) to be imprecise about certain bindings (on the
type of variables, for instance) by using the bindings available at

the times those objects are used.

The process of creating and debugging a program can be viewed
as an iterative, root-finding procedure where the equation to be

solved can be stated as



2-8

which is accessible in a consistent, simple (and minimal) way and

which is useable by components of that same repository.

Given that he can also access portions of other people's
""personal libraries" in as easy a fashion (by adding their name or
identification to the qualified name of an object), the system then

can become a medium for collaboration between him and his colleagues.

2G  Monitoring

The notion of an interrupt has been a great aid in the evo-
lution of operating systems, but ,except for the ON-statement of PL/I,
has not appeared in higher level languages. Some of those interrupts,
such as checking each use of a variable or a statement, took advan-
tage of the structure of the language. Such a facility would be

very useful in an IPS.

Fisher [Fi 70] has described an interesting control mecha-
nism called "continuously evaluating expressions' which mimic a
separate processor which evaluates some expression and interrupts
the running program whenever the value of that expression changes
to true. If this were imbedded in an ON-statement facility, anything
having a name in the system could be monitored (although the expehse

might vary widely depending on the object being monitored).

Another approach to monitoring is achieved by constructing
the system as a configuration of sequentially cooperating processes,
as suggested by Krutar [Kr 69]. Then a monitoring process could be
inserted between any two system processes and would become active
whenever control came to it. At that time it could decide
whether conditions warranted making some program active. Thus it
acts like a polled interrupt, unlike the first method which, while
it may be implemented by polling is nevertheless distributed in

scope over the execution of the program which activated it.



2
1
-~

systems, the main operations of copying a file between secondary and
primary storage has been a special operation. If we regard files
simply as nameable groupings of data structures (i.e., programs,
data and control information) which happen to reside on secondary

storage, they begin to look more like other data structures.

Assume that copy is a monadic operator which, when prefixed
to the name of some object, suppresses any normal evaluation asso-
ciated with it. Then,

A + copy B
where B is a procedure and A the name of a file means that a copy of
the procedure B, which might include its text and object code, for
instance, is to become a nameable object in A on secondary storage.
To name an object D residing in a file A we can use the notation
A.D; thus,

C 4—_¢_QE>_J_A.D
would mean that a copy of the object D in file A is to become the
"value" of the variable C in the default ''file' which is the user's
working memory. Neither of these operations have depended on the
fact that A really is a file; it could as well be a function with a
local variable B, or a program :ontaining a local function named B.
Indeed, it should be possible to simply access an object D in A
with the same notation: hence A.D[I], A.D+3, or A.D(3, ) might all

be valid uses of the object D in A, depending on its semantics.

In such a system where everything is accessible by some qual-
ified name (or tree name), such naming should be all that is needed
for accession, whether the object be a file or program or a scalar
variable. The ''special nature' of a file then melts away, and more
importantly, the notion of an explicit directory associated with
secondary storage disappears. The user can then simply think of a
universe of objects which he may use in a continual way from day to
day for his work. This does not imply that he does not realize that
storage hierarchies exist which have differing response times; econ-
omics will generally make him careful about such things. But it
does mean that he can think of such a system as a repository of per-

sonal knowledge, algorithms, bibliographies, research ideas, etc.



stratum, providing certain functions to the user, which is layered on
a system which provides the capabilities for those functions to oper-
ate. This can be considered a limited form of bootstrapping, and

one is then led to the obvious questions: how far down can that top
layer be pushed; how much of an IPS is needed to provide a base on
which to build a full IPS; if one could find such a base, what prim-
itives would it have and how many; if the number of primitives is
small, does that necessarily imply that one could move an IPS built
on them from machine to machine with much less trouble than the en-
tire system? Our aim in the next three chanters will be to attack

these questions one by one.

One very large trouble spot still exists, however, if we
would like to bootstrap an IPS. The better interactive systems
have been interpretive, and interpreters usually run many times slow-
er than compiled code for the same language ( often in the range
from 15 to 50 times as slow); then the parts of the system which were
written in the language would run n2 times as slow (where n is the
slowdown caused by the interpreter) because they would be interpre-
ting the actions of a program while themselves being interpreted.
Clearly, then, a bootstrapping IPS will need to be efficient as well

as flexible and powerful.

Another very beneficial side effect of bootstrapping an IPS
is that the system implementors are able to reap some of the benefits
of using an interactive system. Moreover, after the system is com-
plete, many system "bugs' which appear can be hunted down and correc-
ted using the IPS itself, and the error-checking facilities provided
by it - assuming, of course, that it is not one of the error-checking

routines which has the bug.

2F Other Features

"The ability to retain programs and data in a variety of
states over an indefinite period of time" [MPV 68] has been stated
as a feature desirable in an IPS. Each of BASIC, JOSS, APL, and LC2
has had some facility for files of programs and/or data and/or con-

trol information, but none has had all. And, in each of these



2-5

the interface ports, which is desirable but not entirely necessary.

We will assume that either is possible.

Krutar calls programs which communicate input and output
over ports, independent processes, independent in the sense that
they care not from whom they obtain input nor to whom they pass out-
put. A group of processes hooked together by .their ports is called
a configuration, and in fact has all the characteristics that a

single or atomic process does. Such a configuration is also called
a society of '"sequentially cooperating processes" (not to be con-
fused with Dijkstra's 'cooperating scquential processes' [Di 68]),
since control can reside in one and only one of the atomic processes
at a time, flowing from one to another, along with interface data or

parameters, over port connectionms.

This control/interface regime is not limited to connections
only at the ultimate I/0 level, but pervades the entire construction
(configuration might be a better term) of the system. Thus, in the
above diagram, it may very well be that the process labelled IPS is

not an atomic process, but itsclf a configuration.

Systems constructed as process confipurations have another
property of interest to interactive proeramming., Since an individ-
ual process is not, in general, aware of which process is attached
to a given port, one can insert a process between any two directly
connected processes (and therefore an arbitrary configuration). For
dcbugging this means that a user could interpose a process of his
own into an IPS betwcen any two system components which are proces-
ses, Good places for this might he between an actual input
process and the translator - this would be a macro processor; or he-
tween an error routine and an output process - this would be a mes-

sage filter.

2E . Bootstrapping

Once a user's programs have access to some system data struc-
tures, many of the system functions can then be written in the in-

teractive language itself, as just outlined. Thus there is a top



[ ]
|
=N

terminal. And if they are not knowledgeable about a given circum-
stance, then the immediate answer is that they must be augmented in
order to handle that case. This kind of centralization will make

USER and CENSOR unnecessarily complicated.

In any IPS there is (normally) a fixed number of routines
which may potentially wish to interact with the user: the routines
which print error messages, read lines typed by the user, or type
program output are examples of these. Fach of these routines can
be said to have one or more "interface ports' to the user, which
ports are unidirectional, two being needed if hoth input and output
are to be performed. The generalizations of USER and CENSOR could
then be a number of programs which can be attached to these ports
(the same program may, of course, be attached to more than one such
port). This distributes the interface and its control so that no
one large routine is required to handle all cases; rather, each
such interface is changeable (since the nrogram attached to that
port is replaceable) and may present a different form to the user

depending on its function. A graphic view of such a system might be

PROGRAM
OUTPUT

\__/

where the ERROR CENSOR is connected, via its own interface port to the

USER, with the understanding that USER will return control along the
path which it obtained it; i.e., either to ERROR CENSOR or to IPS.

An excellent implementation of this model of programs with in-
terface ports has been developed by Krutar [Kr 69] to whom this model

is also due. That implementation uses coroutine control over



2-3

interrupt by the user. The IPS thus makes the tacit assumption that
by calling USER it has fulfilled its responsibility for contacting
the human user. This opens some interesting control possibilities
since USER could in fact decide to handle some conditions without
bothering his creator - interfaces for neophyte users of the system
or control filters for an experienced user, designed by himself, are

only two of the possibilities open.

But USER can only exercise such control if it has the in-
fermation necessary to make decisions; that information clearly
must also be available to its human counterpart if he is to be
able to make good decisions. Hence, UUSER must have access to at
least some of the control information of the system such as the
call hierarchy, the control point in the user's rtunning nrogram,
and so on. DNut USER is just a program in the language of the system

and is therefore indistinguishable from any other propgram - except

by its name, which does have special signifigance to a number of the
system components. In the future, any arguments about the structure
of an IPS dependent on the existence of USER must, therefore, bhe

understood as applicable to the language as a whole.

USER can he viewed as an input filter to the IPS since all
input normally passes through it. 1Its counterpart is a filter for
the output from the IPS. We shall call it CENSOR, and the svstem
knows about it just as it knows about USER and considers its re-
sponsibility for output to the user dispatched by calling CENSOR
with the output as parameter. This does not mean that simple
output capabilities do not exist in the system — they must if
CENSOR is to be able to type anything at the user's terminal — but
it does mean that the system reclinquishes the action of typing on a

console to one program over which the user has control.

2D  Coroutine Control for Interaction

The foregoing requires that the nrocedures USER and CENSOR,
having centralized control over I/0, must be "omniscient' about the

meanings of all possible input and output strings at the user's



