2-2A

This interface will normally then prompt the user to enter a
statement at his terminal. If he types a statement without specifying
that it should be saved as a line in a program, then the system will
translate and execute that statement; otherwise, it is saved as a line
in some program as specified. By entering a direct statement whiéh
calls a saved program, the user gives control to it. It may later call
USER directly or indirectly (such as the occurrence of an error).

Other parts of the system also may interface with the user: examples

are data requests by the program, program output, etc.

This control is maintained by certain actions of the IPS. USER
is known to the system components, and they will call it in order to

handle errors, special conditions, or in response to an

2-2

are other data structures in an interactive system which users could

make use of within their programs.

An immediate candidate is the symbol tabley,which associates
names with objects (variables, programs, etc.) in the IPS. The
ability to access and sequence through this structure would allow
the user to display the names of all variables; ask whether a given
variable had already been used by him; or, using the symbol table
and the program text, create an index of all the statements using a

given variable, for instance.

Many of these features could replace those already available
in JOSS, APL, and LCz, and some, such as creating an index of the
uses of a variable, or simply listing the names and number of lines
in individual functions are not even available in those systems,
Hence, users could augment the available interface and context fa-
cilities of the systems by their own programs, thus tailoring the

systems to their individual tastes and needs.

2C The Concept of the User as a Function

One further mechanism can allow this molding of the system/
user interface to be completely under user control. That is to ex-
tend the notion of the user's representative to the system as sug-
gested by the PART 0 concept in LC2 to be a procedure (we will call
it USER) which is expressible in the language of the IPS, and which

is considered as the interactive control manager of the system.

Hence, USER is the face of an '"execution facility' and acts
as the agent (though not necessarily the only one) which allows the
human user to enter statements which can be saved or directly exe-
cuted by the IPS. Thus, when a user logs into or begins a dialogue
with the IPS, some initial interface will ''get' his version of
USER — which may, of course, be some standard one — and call it,

making it the controlling program for the system,

2=1

2. Design Considerations for an IPS

Now that we have given a brief survey of some interactive
systems and some criteria for judging them, we will investigate
further the implications of both the history and the criteria for
designing and implementing an IPS,

2A Direct and Stored Statements

The notion, due to JOSS, that each statement of the language
should be able to be used both directly and indirectly (i.e.,
stored as a line in a program) gives rise to a number of conse-
quences. Some of these have already been mentioned but are re-

peated here for completeness.

(1) Since the language must contain statements for modifying
program text, therefore, program text is a data structure of

the language.

(2) Given that program text is data, it is desirable to make
available those operations which the system possesses for treat-

ing it. Among these are the following:

2(a) to translate a statement as if it had been entered hy
the user at his terminal, executing it if direct or storing

it if indirect;

2(b) to sequence through the data structure in the lexical

order (by line or step number) of the program; and

Z(c) to access the text of a given statement as data (prob-

ably a string) which can be stored as the value of a variable.
An interesting side effect of 2(a) is that any parts of the lang-
uage which only allowed constant information in certain places
can now have variable information in those places, since one can
create a string - from the values of variables - which may then be

executed.

2B Accessing Other Data Structures

Once we have allowed access to the system data structure de-

fining the text of programs, one is led to inquire whether there

1D-7

user some indication that this is happening in LC2, the system, which
normally prompts the user for a line by spacing the typing element a
few places, increases this spacing at each nested level of PART 0 --
thus as the user nests more conversations, the system gives a longer
prompting string whenever a line is to be entered by the user.

BASIC: simple and easy to use, but restrictive.

JOSS: very good APL: very good.

1D-6

the part in which a declaration occurred pops the top value from the
stack for that variable. This means that any part which uses a var-
iable, A, for instance, but which executes no declaration for A will
use the same incarnation of A as its caller did. The base of this
inductive definition is supplied by the system's always providing a
value for each variable at the outermost level.

BASIC: poor JOSS: fair APL: excellent

Human Interfacing:

By considering the user as a program, PART 0, in the system, and
by making it possible to express the actions of PART 0 in LC? itself,
the system allows users to make its interface behave in any number of
ways. Unfortunately, this feature was not well-developed in the sys-
tem, or better string replacement operators might have been available
to do things such as macro expansion of program text or even some
parsing at that interface to achieve some language extensibility.
Then a user could readily tailor the language -- insofar as he could

see it through that interface -- to suit his needs and abilities.

The only use made of the typewriter terminal which is not al-

W e . i T T R T
eature of APL wd> pITOMplea vy LIe edasSe wiin Whli..h one can

ready a
unknowingly and incorrectly generate many nested conversations in APL.
When an error occurs in APL, one is often tempted simply to fix it
and then re-call the function in which it occurred. Because of the
ability to nest suspended executions in APL, this procedure will

cause a large nesting of function calls if it is repeated on each

error, without deleting the previous execution. In order to give the

1D-5

Response Suitability:

LC? runs under a general time-sharing system, TSS/360, and has
little control over the scheduling within the system, although it
normally gives good response. Its main drawback is that it is inter-
pretive and is therefore unsuitable for programs requiring large
amounts of computer time or efficient execution.

BASIC: good

JOSS: excellent APL: excellent

Language Power:

LC2, like Algol, only has operations which deal with scalar op-

erands, except for the case of program text, which can be operated
upon in groups of statements. It could benefit greatly from APL's
operator philosophy applied to its other data forms. Some additive,
Algol-like features of note are the inclusion of strings as a data
type throughout the language, reference variables, and the ability to
pass parametrizable expressions as actual parameters to a function

-- Algol's call-by-name mechanism can be viewed as the ability to

pass unparametrizable expressions to functions.

LC2 added locally declared variables to an interactive environ-
ment by (1) making all declarations executable statements which can
only have an effect if actually executed in the course of some part;
and (2) making each variable a stack and stating that any use of a
variable means that the value on the top of its stack is to be used;
a declaration places a new value on a variable's stack (unless it is

a redeclaration at the same level as the previous one), and leaving

1D-4

BASIC: poor
JOSS: fair
APL: good

Assumed Context:

While LC2 does allow a user to save objects (parts, variables
and values) on files, it restricts him from saving control informa-
tion which would allow the type of long term storage of "active' pro-
aram available in APL. Another feature relating to context is the
ability to display type, structure and declaration-level information

about variables at the user's terminal.

The ability to treat programs very much in the manner of normal
data is a feature of LC? not present in the other systems and does
add a useful sector to the universe of discourse available to the

human.

Also of interest is the ability to execute incomplete programs
in LCZ, adding parts as required when programs attempt to use them.
This is made possible by a control statement, RECOVER, which instructs
the system to retry an operation which caused an error; In this way,
a program can proceed after an error involving, for instance, an un-
defined variable or program part, once it has been defined, as if the
~error had never occurred. The system can thus prompt the user to
define parts of his program as they are needed in the development of
the program -- an automated critical path method for system building.

BASIC: fair

JOSS: good APL: excellent

1D-3

This gives one control in both the forward, or calling direction, and
the reverse, or exiting direction. Also, changes are allowed to any
statements except those pending a function return which is not a re-
turn from PART 0.

BASIC: the user must follow a lock-step cycle: edit-run-edit-etc.

JOSS: very good; first system to allow interleaving of execution
and alterations.

APL: good.

Plasticity:

Not only can programs be accessed as in APL, they can be accessed
and changed from within programs (all statements may be used in both
direct and stored mode). Operations exist to fetch the text of a
statement or group of statements as a string value which can then be
stored in a variable and operated upon. The reverse operation of
making a string a statement in a program is also provided and acts
just as if that string had been typed by the user at his terminal: if
it is an immediate (direct) statement, it is translated and executed;
if it is a statement which is to become a step in a part, then it is
translated and stored into that part. This allows existing text to
be changed by a program and also makes it possible to create program

text for execution or to be saved.

Although it allows fairly general, heterogeneous data structures,
it is impossible for a program to get and save information about any
structures, a regrettable deficiency. Its correction could well use
APL as a stepping off point for describing data structures which are

descriptions of other data structures.

1D-2

availability of explicit operations, normally part of the sys-

tem, for use on programs (such as translation and execution);

(4) a view of declarations for variables as dynamic instead of

dependent on the lexical structure of the program;

(5) control over the execution of the program; and

(6) the use of typeless variables, variables not requiring a

declaration, but able to take on values of different types.
These departures and other points to be mentioned we will comment on

within the scope of evaluating LCZ.

Interactive Control

LC2‘s basic control is very J0SS-like, at least in terms of exe-
cution/alteration interleaving. One significant point on which they
differ is that LC2 considers the user to have a program called PART 0
(parts are the basic program groupings used in LC2) which acts as his
representative to the system. As a part, PART 0 is call-able and re-
cursively usable. Indeed, whenever the system needs to make contact
with the user, it does so either by calling PART 0 anew or returning
to an already existing incarnation of it if the statement under exe-
cution was direct. Moreover, as we shall see, PART 0 is expressible

within the LC2 language.

The LC2 user also has control over the flow of control in his
programs., Not only can he start executions at any time, including
the period when a previous execution has called PART 0, thereby giving
him control; but he can also close (partially or entirely) previous

executions and conversations, since PART 0 acts like any other program.

1D The Interactive Criteria Applied to LC2

We will now give a sketch of LC2 (Language for Conversational
Computing) [MPV 68], a system which has prompted much of this research.
The outline will be divided and described under the interactive just
stated. We will '"rate' three other systems, BASIC, JOSS and APL

under those headings also.

1D1 LC2: Language for Conversational Computing

The LC2 research [MPV 68, LM 69, VZ 69] was originally conceived
as the task of creating a conversational Algol system using many ideas
from JOSS as a starting point for the interactive qualities desired.
However, this was soon abandoned because it was thought that the total
bindings inherent in Algol were too much in opposition with the no-

tion of flexibility in an interactive environment.

The result was an Algol-like language with some extra syntactic
sugar and semantic extensions in terms of data types and actual par-
ameters to procedures. The most radical departures from Algol were

(1) the ability to execute incompletely specified programs and,

in fact, intermingle development and initial debugging and pro-

gramming;

(2) the ability to execute parts of programs under different

environments and parametrizations as an aid in program develop-

ment;

(3) the ability to modify, copy, and delete program text (and its

executable representation at the same time) with the same ease

as corresponding operations on more conventional data, plus the

1C-10

1C4 Some Criteria for Interactive Programming Systems

The above two sections lead us to compile the following list
of criteria or design principles for an IPS., We will use these to
evaluate some existing systems and, in the next chapter to justify

and prompt some features to he developed for an IPS,

Interactive-Control: the ability of the user to initiate, interrupt,

and generally interject himself into the control of the system.

Plasticity: the extent to which a system is changeable, especially in
its appearances and behavior to the user. Directly associated with
this is the extent to which the system is self-referenceable: i.e., the
amount of accessibility of programs and system data from within the

language of the IPS itself.

Assumed-Context: the amount and duration of the universe of discourse

which is available when conversing with the IPS. Examples of this
range from the ability to use typeless variables to being able to

stop and restart programs with an intervening delay of days or months.

Language-Power: this criterion is not specific to interaction but is

certainly important in the utility of any programming system,.

Human-Interfacing: Although unmotivated by the preceding batch/ inter-

active comparisons, there is one further criterion which must be ap-
plied to any interactive system (whether used for programming or dri-
ving a car): namely, the smcothness of the interactive controls and
their suitability for human use. This encompasses the face of the
system which the user sees and the ease with which he can manipulate
and roam around in the information space which is of interest to him

when he wishes.

These criteria along with response-suitability discussed earlier,

will be used to evaluate some existing interactive programming systems.
The criteria are not completely pair-wise orthogonal, and hence some
features of the systems to be reviewed, while treated under only one

of these headings, may also lie in the realm of one or more of the
others. The four systems to be analyzed are, in roughly chronological
order, Dartmouth's BASIC, RAND's JOSS, Iverson's APL\360, and Carnegie-
Mellon's LCZ.

1C-9

This can be viewed as the imposition of symmetry into an asym-
metrical control structure, and is extremely important for debugging
and development of programs by preventing one from getting into ac-
tion cul-de-sacs in which nothing can be done. Other mechanisms
of control such as goto's and loops are essentially idempotent
with respect to symmetry; so also is coroutine control of which

more will be discussed shortly.

1C3D System Commands

Since programs are to be viewed as data, the statements
available for manipulating them, once a prime concern of control lan-
guages, become part of the language itself. One consequence of this
is that the execution of programs may be interleaved with changes
to those same programs, either by other programs or the user (which
amounts to the same thing since it is really a program which does
the alterations for him). Above, the user was mentioned as an ac-
tive control element in an IPS, Therefore, what programs can do
so may he: call other programs, execcute statements, be called from
a program, etc. He is a function in the system, of great flexibil-
ity, unpredictable, but without his inclusion in the control, the
word "interactive' becomes inapplicable., In some sense, the amount
of interactive control of an IPS is proportional to the number of
places at which the user may interpose himself into the operations
of the system. This interleaving of execution and alteration is of

central concern to the bulk of the rest of this thesis.

1C-8

1C3B Typeless Variables

JOSS [Ba66] was one of the carliest interactive systems to
allow so-called typeless variables. It is not that such variables
have no type but rather that their type is dependent only on the
value which they represent at a given moment -- their type varies
when their associated values change in type or form. One reason
for their existence is that they allow the user to dispense with
certain unnecessary overhead such as the declarations of Algol.
After all, the user knows what is meant by a given variable, and
that is what really matters. What is more, since variables may be
treated differently as a program is developed, not having to declare
them has obvious advantages for the user. However, it is crucial
that one be able to find out what the current semantics of a var-
iable are at any time, in order to kecep track of variables, in-

formation being a prerequisite for control.

Typeless variables have been one of the main reasons that
JOss, LC2 [MPV 68] and APL\360 [IF 68] arc implemented as interpre-
tive systems. If we are ever to counteract this variability at the
system level in order to cobtain efficient implementation, we
have to find a means of measuring and recording the changes in type

which a given variable incurs.

1C3C Control Symmetry

Putting the user into the control of the system as an active
control agent imposes some design considerations on the mechanisms
used for control. He must have a means of unwinding or killing
part or all of an execution in order to retry certain parts of the
program without necessarily completely restarting the execution.

That is, he nceds a means of reestablishing some previous context and
control sfate from another, later one. One possible way of implemen-
ting this is to have a mecans of closing or exiting from subroutine
or function calls, possibly returning an error indication to those
routines being closed should any of them need to perform some clean-

up before exiting to their caller in turn.

1C-7

1C3A Programs as Data

Perlis [MPV 68] says:

"The program text, being under direct execution, is understood

to be 'immediately' subject to change and hence the system

statements, known as editing statements, are part of the lang-

uage. Put another way, the text is data of the language."
Indeed, the object code of a program has always been partly accessible
(though not necessarily changeable) -- that is what control instruc-
tions do. However, the notion that the program is a changeable,
fluid object is -- aside from languages such as LISP and IPL-V --
peculiar to interactive programming. Perlis's statement may be changed
to read '"put another way, the programs are data of the language."
Since a program may have more than one representation, each may be
considered more or less accessible by the user. 1In fact, we hope to
make the point that any of the data structures in an IPS which are

potentially useful to the user ought to be accessible to him (and

therefore to his programs).

1C-6A

in order to minimize the frustation level of the user. This last ex-
hortation is known as human engineering, or egonometrics in fields

such as the design of airplane control systems, automobile design,etc.

1C2ZE Types of Program Control

The main control mechanisms in batch system and languages design-
ed for the batch environment have been simple, such as subroutine
calls and returns, and coroutine control in a few systems. Some
recent multiprogramming systems have also allowed the parallel exe-
cution and synchronization of independent processes. These controls
are fixed in the sense that the structure of the source programs
describes the execution behavior of those programs. Making control
variable then means allowing control paths to be established and used
which were not pre-defined in the program. The ability to exit from
some part of a sequence of nested calls is a feature which is very
useful in an interactive situation but would be difficult to make
good use of in a batch environment. Even ignoring its relative utili-
ty, it is a feature for which there is little motivation in a non-
interactive world, but whose absence is noticed in a conversational

system.

1C3 The Implications of Variability in an IPS

The sketch just given of a comparison of batch and interactive
systems has some interesting implications for the designers of an IPS.
As well as trade-off decisions about generality versus the ability to
implement and so on, there are some issues which can be directly

dealt with.

1C-6

for instance) of a variable can be considered attributes of the var-
jable. In batch systems the attributes of a variable whose values are
needed in order to use the variable in a program must either be declared
fully, as in Algol, or be deducible, as in Fortran. This is part-
ly so because the user is not available to supply such bindings if

they are needed. Allowing such attributes to be variable (as opposed
to unspecified) has more meaning in an environment in which the user,
because he is creating and debugging programs on-line, may decide to
change those attributes and the way in which he uses certain variables

as the program develops.

1C2D User/System Interface

The face of a batch system seen by a user usually consists of a
highly specialized language called a control language, whose statements
are interpreted by the system to determine what functions,such as
compiling, loading or executing, are to be performed in a given job.
Allowing this to become variable can be done in two senses. The first
is in making the control language truly a programming language with
the control mechanisms and program structure of such languages. The
second involves changing that language to allow it to be altered by
the user to suit himself. In a batch system, control statements are
of secondary importance to the task of running programs; in an inter-
active system, however, they become almost paramount, because of the
change in their frequency of use and because of the close association
of the user and the system across that interface -- when a facility

is used a great deal, it is important that it be smooth and functional

1C-5

1CZA Program Text

Decks of cards have been a way of life in computing since (and
in fact before) the genesis of electronic digital computers. Any
changes to programs or data in card oriented systems thus involves
insertion, deletion, or replacement within card decks and is normally
done off-line by the user with a keypunch machine. Those handling
larger programs and files of data generally have had the ability to
perform exactly these same functions with a computer and magnetic
tapes. Once the text of a program becomes accessible as a file with-
in an interactive system, however, the card-image view of the world
breaks down. Contextual modification of files and program-directed
file searches become a part of the normal operations derived from the

handling of card decks.

1C2B Program Representation

Programs in a batch system can normally be considered to be in
one of a small number of states: source, object deck, or loaded in
memory. The transitions between these states are known as compiling
and loading. When a program is accessible as a file or data structure,
these distinctions become unimportant and the user may view his source
text as the only representation of his programs. Hence, the changing
of a line of program text should also result automatically in changes

in the '"machine code" for that program.

1C2C Attributes of Variables

The type (integer, real, etc.) and the structure (array [1:10]

1C-4

we also have an argument for allowing a single user to own more than
one operating process which he can link up to or detach to run sepa-

rately, as desired.

We prefer to replace Simon's and Miller's considerations by
the following:

Response suitability: the responses to the user should be

within acceptable time limits for the type of task performed
(this includes (1) and (2) above), and the more tasks which
can be called trivial (i.e., give immediate, two second re-

sponse), the better.

This is the first of a number of criteria which we will develop for
interactive programming systems. Much can be discovered about con-
versational programming by attempting to understand what differentiates
an IPS from a batch oriented system. This will in turn lead to

some more criteria similar to that above.

1C2 From Batch to Interactive Systems

Most of the differences between interaction and batch proces-
sing are of the form: make variable something which was usually con-
sidered as fixed in batch systems (sece, for instance [Ba 66] and
[MPV 68]). The introduction of the human into the system loon is the
main reason for the introduction of such variability. If such
variability is not available, the main advantage of using a terminal
system is the time saved in walking to the computer to have a program
run. Therefore, we will examine a number of the quantities (real and
abstract) which are manipulated in both batch and interactive systems,
with a view to investigating the consequences of making variable what

formerly was not.

1C-3A

full duplex terminal. Almost no delay can be allowed between de-
pressing a key and the corresponding character's being printed (0.1

to 0.2 seconds) due to the computer's echoing it. When a line is
completed, however, he will accept a much larger wait (about 2 seconds)
until the system prompts for the next line, even for the most trivial

of tasks.

Simon's second design principle essentially defines a maximal
wait time (he estimates about ten minutes) beyond which the user
could switch tasks and use the time to advantage. The ideal, of
course, would be for the system to tell him when a task will take
that long and possibly even allow him to ask for the answer when he
is ready for it rather than have the system interrupt him in the

middle of another task. If the other task requires using the system, then

1C-3

a conversation is not well balanced. The first is that the more pow-
erful conversant will simply remain in the situation, utilizing his
time poorly. The second disfunction is the result of information not
arriving at an appregriate rate or in an appropriate form. In this

case, a conversant may process that information inefficiently; eg., dis-
playing numbers in octal could create such a situation when the user

is only able to add in decimal and must perforce perform conversions

on the output in order to do simple calculations.

As a result, Simon proposes the following design principles for
conversational systems:

(1) 'meither the human nor the machine component of the system

[should] respond at rates either above or very much below their

processing capacity'';

(2) "the human, like the computer, has minimum swap times+

which we can estimate roughly".
The first principle is a direct result of his statements about a bal-
anced conversation. A similar point is made by Miller [Mi 68]: re-
sponse times are important when the task being done is a transition
to a goal of some sort. The concept of 'goal' in this context is
really a subjective sense of completion called 'closure' by psycholo-
gists; the rule is that more extended delays are acceptable after a
closure than in the process of obtaining a closure. A good example

of this occurs in the echoing of characters typed by a user using a

+ The human swap time is the time it takes to stop one task and

"get up to speed' on another.

1C-2

(1) any time-sharing system will become saturated by its com-

munity of users; and

(2) the definition of what is a trivial task depends solely

on whether or not the system can perform it and give immediate

response to the user.
It must be pointed out that (1) does not mean that research into the
development of more efficient and powerful time-sharing systems is
futile: on the contrary, it is the carrot held before all who work in
the field. Moreover, such research is the primary way that a man
over computer imbalance stress is nullified. Similarly, (2) implies
that a good way to make better use of human '"nerve-ware" is to find
better and faster ways to perform the tasks they request. In this
way more and more tasks will enter the class of trivial tasks thus
allowing the human to work at an ever higher level. The building of
theoretical systems in mathematics by proving theorems using previous-
ly proven statements instead of always invoking a set of axioms and
inference rules is an analog of this process. Indeed, the prime mo-
tivation for this thesis has been the fact that a large number of
tasks which ought to be trivial in interactive programming (by this

author's judgement as a user} are not, andcould be made so by research
into the properties of execution in a conversational environment.

1C1 Human Psychology and Interactive Programmigg

We have spoken several times of "immediate response!' A good
definition of this term has been worked on by very few pcople. One
notable paper by Miller [Mi 68] and another by Simon [Sil66] have
dealt with this problem. We will not delve into Miller's results
here, except to mention that he has classified a large number (17 to
be exact) of interaction situations and given time bound estimates in
those circumstances. On the other hand, Simon's paper really deals
with relative time: it was his description of a balanced system as
one in which the two conversants '"are approximately matched intellec-
tually and are taking symmetric roles in the conversation" which

prompted the preceding analysis of processing power imbalance.

Simon mentions two possible disfunctions which can result if

1C-1A

complement the other's inefficiency. That is, it will be used for
more and conceivably larger tasks in order to utilize its wasted po-
tential. And, to the extent that it is used for more by the weaker
element, the more the weaker's definition of trivial will expand to
include those tasks. This will ultimately saturate the more powerful
processor; in the case of a computer, this has resulted (historically)
in the development of bigger and faster computers. So far, men's
need for information has been the prime stress keeping this cycle go-
ing. The human's power, then, can be measured in terms of his ability
to propose more complex tasks whenever an idle computer can be found.
The computer's power takes the form of performing those tasks in less
and less time. In any case, there are two main consequences of this

argument :

1C-1

1C Considerations and Criteria for an IPS

An IPS can be thought of as a small, closed society of man and
system, with mutual feedback. Because of the problems in developing.
time-sharing systems and the cost of hardware, the user's needs have
only been met insofar as they have not adversely affected the compu-
ter's efficiency. Simon's statement which we quoted in section 1B
implies that some of the initial impetus for time-sharing was thati the
user was sitting idle a great deal of the time when using a batch sys-
tem. The concern over idle time is clearly symmetrical, and whenever
there is an imbalance in the man-computer system, the system can be
expected to move (or be moved) in such a way as to nullify that im-
balance. This statement is reminiscent of LeChatellier's Principle in
chemistry. This imbalance is not one of processing power pre se; ra-
ther, it is concerned with the complexity of the tasks which the man
can request the computer to perform, relative to the computer's pro-
cessing ability. The converse, of course, is also true (as witness
the amount of work which may be initiated by the user in response to

an error message from the system).

It is a generally held belief that interactive systems should
give "immediate' response to trivial requests [We will delve further
into the meaning of "immediate" shortly]. The crux of the matter,
however, is the definition of a trivial task; for it is clear from
the analog to LeChatellier's Principle above that if either the human
or the computer element of an IPS is idle, more processing

load will be placed on the more powerful processor in order to com-

Interactive systems do not, however, 'guarantee' good programming,
higher programmer productivity, or even less frustation in using a
computer. Simon [Si 69] has said that a computer is a very powerful
tool; and one quality of tools is that they are not goal-specific.

It foilcws that one can use an interactive system to disadvantage
(in many ways!) Moreover, instead of relieving the early computer
vser from having having to push buttons and throw switches, we have
simply altered the protocol: now he must type commands to the system

in order to get it to perform for him.

Of course, these cocmmands may be much more powerful in their
actions than were the buttons on computer consoles. And, if the user
could alter his protocol, or interface, with the system, hopefully
that is better than requiring him to follow a standard format of in-

teraction. We will develop these notions more fully below.

1B-3

Control over the interaction has also advanced: many systems
include the user in the interaction whenever an error occurs; he pres-
ses an interrupt button at his remote terminal or the program which
he has written requests his intervention. This flexibility in man-
machine interaction has benefitted a great deal from the pioneer ef-
fort of JOSS. It was the first system which allowed one to edit, add,
or delete programs within the framework of the conversational language.
In JOSS, one could also suspend program execution and examine the
state of control of the program and then change it to suit one's
needs. This control over execution of a program has added a great
deal of flexibility to the task of creating and debugging programs. The
user need not completely restart a computation because he forgot to
initialize a variable for instance, but can assign a value to it when
the system discovers the value is missing, and then tell the system
to continue from where the error occurred. If such an error occurs
in most noninteractive systems, either the error is not
detected, in which case the value of the variable 1is
meaningless, or the user's program is terminated with an
error message, after which he has to re-submit the entire pro-
gram (after fixing the error, hopefully). The disparity between this
procedure and that available in a language such as JOSS is one of the

main reasons for the interest in interactive systems.

One last item of note is that variables in many conversational
systems are considered ''typeless'; i.e., it is not necessary for the
program to specify that X, say, is real. The fact that the value of
X at some moment is real is sufficient for the system to use it cor-
rectly. Moreover, the type of X may be allowed to change as the
vaiue of X is changed; this it may be an integer one moment, and a

real or string value at some later time. The prime motivation for

this facility is that such "internal bookkeeping" is part of the
common context of the interaction - thus, explicit reference to such

items ought to be unnecessary.

