A-1

Appendix A

In this appendix we will describe a particular design of a Conversa-
tional Base Machine (CBM). Much of the motivation for the features
were developed in chapter 5. Other features reflect the author's

personal preferences, and, as such, are not defended.

Al The CBM Data Structures

For the purposes of this description, a set is an ordered col-
lection of binary words on which we wish to place a 'meaning!'" The
primary information about a set is part of the set itself. This is
done for reasons of garbage collection and consistency of structure
in general. Also, the different forms of sets, atomic, non-atomic,
and programmed extensions are represented by a common format, mirror-
ing the philosophy that the software is really an extension of the
hardware. For primitive structures (those predefined in the CBM), the

type may be dissectable into informational subfields such as the num-
ber of words per element and so on. Non-primitive data, hereafter
called structures, contain type information and a pointer to an infor-
mation block for the structure class (which contains size information,
addresses of routines to be used to extend the basic machine opera-
tions, etc). Such structure blocks are themselves instances of struc-
tures which happen to need no other structure blocks to define them

and which are primitive in the CBM.

The primary motivation behind such an approach is the desire
that the hardware/software interface be consistent and flexible. That

is, the subsuming of software functions into hardware for reasons of



6E-2

(1) interpretive control is decentralized throughout the routines that
perform actions corresponding to nodes in the parse tree;

(2) factored interpretation on trees requires less restrictions on
the forms and times of changes which can be allowed to be made to
programs and variables; and

(3) re-interpretation which is caused by such semantics changes is,

in some sense, minimal in the case of a Tree Factored Interpreter.

Chapter 4, Differential Data Structures and an Extended TFI,

gave a detailed discussion of implementations for variables and data

in an IPS. Particular attention was given to the representation of
symbol tables and to the means of implementing variables depending on
what is known about specific variables. The latter part of the chapter
was devoted to making the TFI scheme efficient with respect to memory
utilization and to removing the remaining restrictions on the allowable
times and forms of changes to variables in an IPS. Finally, we pre-
sented a method by which such a generalized TFI could act as a '"normal'!

compiler with very little change.

Chapter 5, Bootstrapping an IPS, outlined a methodology for

bootstrapping an IPS with an eye to being able to move the resultant
system from machine to machine with some ease. The base on which the
system is to be built was described in terms of the 'primitive'" opera-
tions needed by the TFI and other mechanisms in the foregoing parts of
the work, with special attention given to subroutine and coroutine
control and to the representation of data structures. A detailed de-
scription of a base which conforms to those specifications appears as

Appendix A.



6E-1

6E  Summary

Chapter 1, Introduction, outlined a modus operandi for this

work called the '"Spectrum' philosophy: whenever there is more than one
instance of a structure or feature of a system, those instances are

to be considered as bands in a spectrum, and one should investigate
and hopefully define its limits, other points of interest in the spec-
trum, or ways of moving automatically within it. A set of criteria
for evaluating and designing interactive programming systems were de-
rived from psychological, physical and intellectual needs of human

programmers as well.

Chapter 2, Design Considerations for an IPS, developed a

number of features for interactive programming, some of which were al-
most direct results of the criteria developed in Chapter 1. Among
these were considerations of the form and function of the user/system
interfaces, control structures for interaction, and the need for in-

terpretation and compilation both within a single IPS.

Chapter 3, Interpretation and Compilation in an IPS, develop-

ed two central ideas. The first, called Factored Interpretation, pro-

vided the prime link between the notions of interpretation and compil-
ation and showed how the latter could be obtained automatically from
the former given suitable restrictions on the variability of the pro-
grams and variables being so used. The second idea was simply a means
of using a form of parse tree program representation to drive interpre-
tation. When coupled with the notion of a Factored Interpreter, such

use of parse trees has the following properties:



oU=-4

Too much hlue sky shines in such proposals for a simple Ph.D.
dissertation! Nevertheless, some smaller and not completely absurd
steps toward these objectives include the development of better
communication facilities with méchines, utilizing our already well
developed natural modes of expression and reception: auditory, tac-

tile, and optical.

This and work toward smooth system features involves joint re-
search with -behavioral psychologists; but in systems involving human

interaction that is certainly long overdue.



6D-1

Three recent developments of interest deserve mention as examples
of a similar direction of research. The first is the development
of the components of a many-user time-sharing system as a set of
micro-coded processors [LS 70, BCC 70] for central processing units,
a hardware scheduler (called the pscheauler), a swapping scheduler,
and a sophisticated channel. The CPUs in that system have many high
level language features such as array indexing, subroutine calling,

and parameter passing encoded in the micro-code of the processors.

The second development is the design of an APL machine by

Abrams [Ab 70] which is able to evaluate APL expressions in a
highly optimal fashion. The last hardware development of note is the
FLEX machine described in Kay's dissecrtation [Ka 69], It pays a
great deal of attention to the way in which the user communicates with
his programs in both a physical and logical sense. It also contains
an approach to the problem of attaining efficiency without loss of
flexibility which is different than that developed in this work, but
allows programs to exist in many different representations. Such

fluidity of programs has been a hallmark of this research.

6D Long Range Research Goals

There is a strong temptation at this point to simply pull some
extracts from science fiction writers such as Asimov or Clarke and
reproduce them here. Far, to some extent, the truly long range goals
of research such as this are clear: sophisticated machines to work for

and with us — tools to adapt our organic frames to more complex uses.



6C-3A

by a single common language suited to interaction is a result of this.

6C2 Hardware for Interactive Programming Systems

The discovery of a set of primitives for building an IPS,
along with the bootstrapping approach suggests the development of
hardware for an IPS. Iliffe's Basic Language Machine is, in fact,
intended to be implemented as hardware; and the appearance of micro-
programmable computers with read/write micro-store [SC 69, DSC 69] is
very encouraging and we look forward to some interesting results in
this direction in the next few years. Our Conversational Base Mach:ne,

Loy instance, could be implemented as ''firmware'' on such a machine.



6C-3

Similar features have been incorporated in the command lang-
uages of a number of multilingual systems. This expansion of the
command language facilities to include features normally associated
with programming languages results from the importance of the user
interface in an interactive environment. As users become sophisticated
controllers of a multilingual system, more and more time is spent
manipulating the features of the system and in switching between dif-
ferent processors such as text editors, compilers, etc. As a result,
such features as recursively callable procedures, macro expansion
(and thereby some syntax extension facilities) and arithmetic and
logical abilities on numbers, address values, bit strings and char-
acter strings have become part of these command languages. An excel-
lent example of such a command system is the CL-II command language

of TSS/360 [IBM 69].

In short, the command language has evolved into a reasonably
powerful interactive programming language. Unfortunately, in so doing,
many of the lessons of systems such as JOSS, APL and LC2 have been
neglected; interactive control, especially, has not progressed to the

degree available in monolingual systems.

As interactive programming language systems become more pow-
erful and more widely used, we can expect this trand to more flexible
command languages to continue, and we can expect the distinctions be-
tween multilingual and monolingual systems to fade. For, what the
users are really doing is changing the human-system interface to make

it easier to manipulate; replacing separate controls and languages



6C-2

they can also be considered as tools for the designer. We propose an
evolutionary approach. for the use of the criteria: where they miss
the mark, they should be amended or augmented in order to make them

better approximations to the needs of the real world.

6C1 Monolingual and Multilingual Systems

It has been stated that ''general' time-sharing systems such
as TSS/360 [Le 68] and MULTICS [Sa 66] are more powerful and more use-
ful than monolingual, dedicated systems such as JOSS, APL and LCZ.
Since most dedicated systems have stressed ease and smoothness of use

over efficiency, it should not be surprising that they are more limit-

ed, computationally, than the TSS and MULTICS type of system.

However, in terms of ease of use, acceptability by users
and reliability, there is less agreement as to the dominance of
general, multilingual, time-sharing systems over the monolingual, dedi-
cated facilities. One main reason for this is that the ''command language,"
the text editing facilities and the programming language in a
monolingual system are one and the same; that is, there is one common
syntax for these interrelated tasks, and each "sublanguage' may use
the features of the other parts of the system. Thus, one can use the
procedure feature of the programming language along with text editing
statements to build text editing procedures, or one can include 'com-
mand language' statement types in procedures in order to take advan-
tage of the forms of control and parameter passing in the programming

language.



6C-1

suitable for that user, or class of users, and to encourage the
evolution of interface facilities with use over time;

(3) the efficiency of the user's programs is not proportional to the
speed of the IPS, as is the case with an interpreter they can
execute at the hardware speed of the computer hosting the system;

(4) the system encourages the development of programs which, by
being independent and using a coroutine form of control, aids
the building of large systems of programs; it is not meant
simply as a replacement for a desk calculator or for running
only small jobs; and

(5) reconstruction of the system for a new hardware computer is
meant to be minimal; only the basic set of primitives need be

reprogrammed in order to move the system from machine to machine.

6C Short Term Research Areas

One of the measuring rods for any research is the amount of other
research which it suggests and prompts. The Algol-60 effort, for example,

has prompted much work in parsing of programming languages, com-

piler construction, and language design and description.

This work has developed methods for achieving efficiency in pro-
grams and data structures within an IPS without sacrificing flexibil-
ity. It has also proposed an organizational structure for interac-
tive programming systems and, perhaps just as importantly, put forth
a set of criteria for evaluating an IPS. Those criteria, though well
considered, must be viewed as only an initial stab at establishing

such a set. To the extent that they are used in designing systems,



6B-2

user, though to a lesser degree. In order to maintain the ahility

to change the representation of a program, it is necessary to main-
tain certain information — an audit trail — which facilitates such
changes. In order to get rid of that overhead when change was no
longer so necessary, the user must make a '"contract'" with the sys-
tem, albeit a very loose one. That contract takes the following form:
" compile program X; in return for that service I, the user, promise
not to change the program or its variables unless it is inactive."
Indeed, it is less a contract prohibiting change than a "gentlemen's

agreement' on the circumstances under which changes are to be allowed.

Another view of the Interpretation/Compilation scheme which was
originally given in section 2H is that it is an attempt to take ad-
ﬁantage of de facto constancy while allowing the user to dispense with
declaring such constancy. In order to build a system with this facil-
ity, declarations are required at some lower level: that level is low
enough to make it a feasible basis on which to build an IPS of the
type described in the thesis. An analysis of what that base looks
like and how it can be used to bootstrap the IPS was the topic of
chapter 5. The primitives which were given there in outline (and
more specifically in Appendix A) were those developed in chapters

2, 3, and 4 of the thesis.

It is worth restating some of the properties of such an IPS:
(1) it is modifiable within itself, making available the system fa-
cilities as debugging aids for the system implementers and
maintenance engineers;

(2) it can be changed easily to make its interface with the user



6B-1

Among these were the concept of the user as a function, coroutine
control and independent processes as a means to a well-structured
and changeable system, and, most importantly, access to the system
data structures as a prerequisite for an IPS changeable by the user.
The natural result of this is a system which, being partly self-

modifiable, is also bootstrappable to an extent.

6B The "Spectrum'" Philosophy

Wherever more than one instance of a common phenomenon (such as
interpretation and compilation for execution) has been found, we have
attempted to understand it as a whole spectrum of instances of the
phenomenon. Chapters 3 and 4 were heavily involved with understand-
ing the execution of programs and the representation of data struc-
tures in an IPS. A means of having the system move automatically
within the execution spectrum — between the extremities of compila-
tion and interpretation — was developed, called the TFI (Tree Factored
Interpretation), which changes the representation of a program de-

pending on its usage.

In the case of data structures, we developed no automatic means
of smoothly traversing the representation spectrum, but did find a
number of discrete points of interest. Those points, corresponding
to different representations for values, depended not only on the
state of the data (whether or not the value was declared, for exam-
ple), but also on the state of the user and his willingness to as-

cribe attributes to values as information which the system could use.

The TFI mechanism has this same failing of dependency on the



6A-2

is completely untested by users in real situations until large amounts
of coding have made the system difficult to change. The system which
results after some years of usage normally bears only scant resemblance
to the original structure, and has often degenerated into a "dirty"

implementation with little of elegance or simplicity remaining.

Some morals which may be gleaned from this are:

(1) to fight change by building inflexible systems invites corruption;

(2) it would be better to expect evolutionary change in a system by
building it that way than to resist it and ultimately have to
accept revolutionary change (such as the so called ''mext genera-
tion'" of systems); and

(3) system designers must concentrate much more on the human users of
a system, bending and developing the system to their needs, and
not vice versa: an excellent way of doing this is to make the
designers wear users' shoes by demanding that they use and eval-
uate the system they are building.

There are more of the same given in Appendix A of [EER 68], but the

above will suffice as motivation in retrospect for much of the thesis

work.

Chapter 2, Design Considerations for an IPS, gave a step by step

development of some particular features for an IPS. Those features

were prompted by the material in the introduction on designing an IPS,
plus the sketch of LC2 under those considerations. Much of that de-
velopment was aimed at allowing the user to be a close participant in

the IPS, and also presented some mechanisms which facilitated that.



6A-1

the way, describe themselves as a "Bootstrap Community') has been a
source of encouragement and enlightment during this research. A
statement of that community's goals and methodology, taken from

[EER 68], describe this approach well:

"... the aids developed and experimented with are those that

promise to the Bootstrap Community the best payoff either in

direct improvement of working abilities or in new understand-
ing toward that end.

"Implicit in the above, but deserving explicit comment, is
the evolutionary nature of the system growth that results

from this approach. Developments of various facets of this

system, as well as our means to study, analyze, design and

implement them, must all evolve together in a coordinated
fashion."

O0f course, there is no guarantee that such an approach will lead
to better systems and better use of computers. Nevertheless, the
probability certainly seems higher that such is the case than it does
for the traditional scenario of system development. That scenario
generally follows the pattern:

(1) think of features that a set of hypothetical users might need;

(2) make initial stabs at means of implementing the features

derived in (1);

(3) 1if implementation is difficult for some features, reiterate

through steps (1) and (2), modifying the features as necessary;

(4) construct the system as designed, with possible repetitions

of steps (1) to (3) if the design does not work out;

(5) finally, release the system, largely untested, to the user

community.

The glaring difference between this procedure and that advocated by

Engelbart et al is that a system developed in the traditional manner



6-1

¢ Conclusions, Future Research and Summary

The research reported here has been concerned with three aspects
of interactive programming systems: design , architecture, and
construction. The Bulk of the thesis has dealt with the architecture
of an IPS, especially as regards the flexibility and efficiency of

programs and the data structures needed by both user and system.

The term aesthetics has been used as an umbrella for those as-
pects of the design of an IPS pertaining to the user's psychological,
physical, and intellectual needs in terms of interactive computational
tools. Such design considerations, while valuable in their own
right, have also provided much motivation for the remainder of the

research.

The inclusion in this work of a method for bootstrapping an IPS is
the logical end-product of aesthetic considerations and flexible archi-

. ecture.

6A Flexibility in Programming Systems

An over-riding belief buried in these pages is that if interactive
programming is to be truly useful, then it must be used not just by

the non-system programmer, but also by system programmers (which can

be rephrased as: why should the users have all the fun?). Bootstrap-
ping, as well as being an elegant way of building systems, also pro-
vides impetus for efficiency considerations and the use of the IPS by

its implementers in its earliest stages of development.

In this regard, the work of Engelbart's group [EER 68] (who, by



SE-14

activated by the occurrence of an interrupt with interrupt status in-
formation passed as a parameter to the routine. The FLEX machine
[Ka 69] and the RC-4000 Multiprogramming System [Ha 69] are good ex-

amples of systems with such interrupt processes.

SE7 CBM Input/Output

The least well-specified part of the CBM is its set of input and
output operations (this is a direct reflection of the state of I/0
methods in both hardware and software). In general, data structures
are to be allowed to reside on secondary storage; copying them into
primary memory then obscures the actual I/0 operation. Therefore, the
COPY operation of the CBM will include most I/0 operations, with
processes handling I/0 interrupts. In the RC-4000 Multiprogramming
System, every I/0 device corresponds to a process called an "external
process." Such a notion is useful for exporting a system since many
of the I/0 processes can then be initially '"faked" during the boot-
strapping and exportation operations until they can later be written

for the new machine.

SES8 Summary

The foregoing considerations give a broad brush outline of a
CBM. A sample realization of them appears in Appendix A. That
specific design is claimed to be true to these constraints. Other
criteria have entered into the details of our example CBM, and little

justification is given for them in terms of the needs of an IPS.



SE-13

In order to implement processes, a special data structure called
a port is needed. Ports act like channels over which only one mes-
sage at a time may pass. Control also 'flows' across ports between
connected coroutines, usually associated with a request for input on

the port or a request to output a message across the port.

In a subroutine call three distinct actions are combined together:
creation of an incarnation of the subroutine (i.e., space for variables
and state information), the passing of parameters from caller to cal-
lee, and finally the transfer of control to the subroutine with infor-
mation being kept to later return control to the caller. These actions

are separated in process (coroutine) control.

Creation occurs when some process (possibly the user) requests
an incarnation of some process to be created. Since this is really
the action of allocating space for a stack, static variables, and
state information for the process, such actions require no special

CBM instructions beyond the storage allocation abilities it has.

There are two times when parameters are ''passed" between proces-
ses, The first is the passing of parameters from creator to created
process when the new process begins execution. The second time occurs
whenever control flows across a port as a ''message' which passes
over the port. The first type of parameter passage is really just
the same as the subroutine parameter mechanism. The second is inex-
tricably bound up with process control and also needs to be provided

by the CBEM.

Interrupt routines function much like processes which are



SE-12

If a value is to be returned, that can be indicated ir one of

two ways.

(1) explicitly by having a return-with-value operation, or

(2) 1implicitly, by the fact that the top of the stack is not at the
return control information but has an extra cell on top of it;
that extra cell is the value to be returned.

In order to allow abnormal returns,such as the return-code mechanism

discussed in section 5D2 (Control Within an IPS),the CRBM needs to

have such an operation. But it also requires a mechanism on the cal-
ling site which can act as a filter of abnormal returns, trapping
those of interest while others aré allowed to percolate back. There
are a number of ways of doing this. One possible method is to attach
a list of return-codes to each call site, which list is then inspected
on an abnormal return. If the return-code which caused the inspection
is one of those in the list, then a pre-specified routine for that
call site is given control, and the return-code made accessible so

the routine can deduce the condition which caused it to be invoked.
Some means of filtering any abnormal return is also needed for rou-
tines which must reset variables or tables to a stable state before
allowing the return-code to be passed back to the caller of the

routine which "caught" the return-code on its way back.

The coroutine form of control advocated for processes may be
thought of as '"above' normal subroutine control. Thus, when control
flows back and forth among a configuration of processes, it may do
so even from within subroutines invoked from the process:;

in this sense coroutine control is above subroutine control.



S5E-11

be reclaimed. A set can only become inaccessible if no accessor
points to it, and that can only occur when the last accessor referen-
cing the set is destroyed. Thus, in the CBM, actions resulting in
the copying or overwriting of accessors may have an effect on the
information for the set accessed in order to maintain storage integ-
rity. Such side effects are common in languages using lists such as

LISP and it therefore seems appropriate to make them primitive in the

CBM.

SE6 Control Structures

The TFI has relied heavily on a certain specific form of sub-
routine control; it is thereforea natural candidate for inclusien in
the ingtruction set of the CBM. For calling a sequence of code, the
following actions are done:

(1) check if the code is valid; if not, transfer control to the rou-
tine INTERP which will cause interpretation to take place;

(2) check whether the complete-bit for the code is on; if it is not,
discard the code and transfer centrel to the routine INTERP;

(3) place information on the control stack (which may or may not be
the same as the operand stack) recording where to return in the

calling routine, and then transfer control to the called code.

The return sequence is very similar to a call:

(1) retrieve return information from the control stack;

(2) check if code to be returned to is valid; if not, activate REVERT
(see section 4C3C);

(3) transfer control to the place indicated by the control information.



SE-10

would be useful for passing parameters to subroutines since they would
then not need to know exactly the depth of indirectness of a param-
eter, but could simply assume it to be direct. Another form of coer-
cion which is related to Auto/Fetch is called Auto/Execute: if an
operand for which a value is desired turns out to be a set of machine
code, then the way to get its value is to evaluate it. These two ex-
amples and all other possible type-i to type-j coercions need to be

stated in the design of a CBM.

SE4 Code Brackets

Another basic function in the CBEM implements part of the code
production scheme needed for a TFI: namely, the substitution of par-
ameters into some prototype code string as operands of certain instruc-
tions in that code. This also emphasizes the point that one must be
able to suppress coercion of operands when necessary. Otherwise,
attempting to copy a code string would normally result in its execu-

tion due to Auto/Execute coercion.

SE5 Storage Allocation

In order to provide facilities for handling the allocation of
storage for complex data structures, the CBM needs primitive operations
for allocating and freeing memory blocks. These operations must not
violate the protection mechanisms of the CBM or those features which
guard against sets becoming inaccessible (such as normal arithmetic
on accessors). For this reason each set in the CRM should have some
mechanism, such as a count of all the accessors referencing that set,

so that when the set is about to become inaccessible, its storage can



SE-9

regular memory, Or resides in the stack (which, of course, probably

itself resides in primary memory).

As mentioned previously, operations should be able to act on
entire sets as well as single elements, and combinations of scalars
with sets. A good example of this might be the ADD operation. For
the moment we will posit an ADD instruction such as

ADD A,B
for the CBM, meaning 'add A to B, leaving the result of the addition
in B." Depending on the structure of A and B, this could accomplish

any of the following:

Structure of A Structure of B Effect of ADD
scalar scalar normal scalar addition
scalar non-scalar for I to size(B) do
(vector) B{I] « B[I]+A;
set scalar B« 0; for I to size(A)

do B <« B+A[I];
set set for T te size(B) do
B[I] « B[I]+A[I];
Since the operands of an instruction carry type information with
them, the CBM should also handle automatically as much type changing
as possible. For example, if one of the operands of an ADD were an
integer and the other a floating-point number, the CBM should automa-
tically convert the integer to be floating (just for the operation, not
permanently) or vice versa depending on which is favored. This notion
of coercion of types needs to be more general since there may be a
number of different types in the CBM. One coercion called Auto/Fetch
by Iliffe [I1 68] involves following a chain of accessors until a non-

accessor operand is encountered. Such implicit indirect addressing



SE-8

of operations into classes of similar instructions (arithmetic op-
erations would be such a class), with the routine being invoked with
the instruction to be executed as parameter. This reduces the number
of routines needed, and the storage necessary to describe a structure
class. It would also be desirable for the CBM to handle standard ex-
tensions for some classes of operators, if the accessor for the routine
for that operator class were left unspecified for some structures.

Many structures, when copied, for instance, are simply to be moved

element by element to the copy site, without any side effects.

S5E3 CBM Instructions

One thing which should be clear from the development of the TFI
is that the CBM ought to be at least a stack machine: that is, there
is a stack (and possibly more than one) to hold control information,
local variables, and intermediate values generated during the evalua-
tion of expressions, and operations to manipulate the stack. However,
because of the ability to have variables whose lifetime is not suited
to a stack discipline (such as ALLOCATED) the machine should not be
just a stack machine, but also allow operations with operands anywhere

in memory as well as on the stack, and mixtures of the two.

Thus, the instruction set of a CBM must be able to use operands
no matter where they reside. And, if the number of operations is to
be kept small, this should be reflected in the type of the operands to
an instruction, rather than in the instruction code itself. This is
just an extension of the notion that sets have type information asso-

ciated with them: accessors for sets must tell whether the set is in



SE-7

The set of operations for a CBM need to be minimal in order to
keep the work of building or moving the base small. Having the
CBM use type information assists this by allowing a single operation
code to handle all interpretations of that action over all its possible
operands. Also, doing this implies that operations can operate on
entire sets instead of just single values. Combinations of operand
types can then yield a number of APL-like operators as primitive in
the CBM. Among these are distribution of a scalar over a vector, el-
ement by element distribution of an operator over two vectors of equal
size, and the '"distribution" of a vector over a scalar, by which is

meant the APL reduction operation (e.g., 4 + +/B).

In order to extend the CBM operations to extended data structures,
the CBM needs a way of activating some routine when an instruction is
"executed" with such data as an operand. There are a number of ways
to do this; we will present three representative methods, ranging from

one routine per operation to a single routine for all CBM operations.

The first method would simply require a vector of accessors of
routines, one per CBM instruction, to be supplied for each class of
extended data (ot for each instance of that clas§. Of course, this
means that the CBM must be able to associate a given extended type
with a unique vector of routine accessors: this will be true of all
the methods presented. At the other extreme, one routine per struc-
ture class would be sufficient if it were passed the instruction to
be "simulated" when activated; it would then act as a machine-invoked
software simulator for operations on that class of extended data.

We prefer an intermediate implementation which divides the set



5E-6

What is important for the CBM is that the extended data struc-
tures be treated in the same manner as hardware primitives by the CBM
programs using them. This is done for two reasons:

(1) extensibility in a bootstrapped IPS is a necessity and not a lux-
ury; therefore, extensions should be able to be treated in as normal

a manner as possible, just as if they were part of the CREM;

(2) since it is difficult to predict those data structures which will
prove crucial in the efficiency of a particular IPS, we must be pre-
pared to subsume non-primitive structures into the CBM, making them
primitive and hopefully more efficient. Since this may be done during
the useful lifetime of the system, and since many users may have sus-
pended processes which presume to use those structures, whether oTr not
a structure is primitive must not matter to programs operating

on it, 1Indeed, our goal is that the programs be free of such knowledge.

Addresses or pointers are important data in most systems. Fol-
lowing Iliffe's lead, we place a restriction on address-values (which
we will call accessors): they may not be operated on by the normal
arithmetic and logical operations used for numbers, bit strings, etc.
This, of course, means that the CBM must provide a comprechensive set
of operations on accessors to make them useful. Such operations in-
clude copying accessors, sequencing through the set referenced by an ac-
cessor and creating and destroying accessors (which both imply the
creation/destruction of a set, since that is what accessors point to).
Accessors must also allow inter-process as well as intra-process ac-
cessing so that one process may, if necessary, use data or programs

in another process.



SE-5

it, a large amount of memory is wasted when each element of a set has
the same form as every other (as is usual in vectors and arrays).
Also, even though the BLM data structures are very general, one can-
not extend the number of '"types' of the machine to include new data
structures. This, unfortunately exposes a difference between hard-
ware and software which is unnecessary: machine instructions are not
able to act on extensions in the same manner as primitive data and

programs must be cognizant of this distinction when accessing or
operating on such extensions. Since we wish to be able to extend the
basic data types to include structures such as trees for an IPS, this
point is one which will be strongly developed in the description
of the CBM in Appendix A. The CBM has a structured memory, like

I1iffe's BLM, and the structures in that memory are called sets.

SE2 The CBM's Data Structures

As in the BLM, the data in the CBM can be considered as n-tuples
of "properties'" such as type, length, protection, value, and so on.
The properties other than the value-property assist the CBM in using

the value of a datum better.

The basic data elements of the CBM are homogeneous sets of primi-
tive values such as numbers, character and bit strings, etc. Another
type of set which is needed to describe the structures of an IPS is a
heterogeneous set: i.e., one in which the elements are not all of the
same type. Some of these heterogeneous sets (called hetero-sets from
now on) may be primitive because of the frequency of their use, or any
other sufficient reason. Others represent extensions to the basic

structures of the CBM.



