4B4-1

4B4 gome Representations for Variables in an IPS

Now that naming structures, attributes for variables, and
the effect of changing declarations have been described, we can
discuss how best to use information about variables in order to store
and use them as efficiently as possible. In the following it is
assumed that terminal nodes in the parse tree which access a var-
iable have the symbol table address for the identifier as part of
their nodal information. The information about the semantics of a
particular variable can be found using the scope algorithm developed
earlier to find the particular entry corresponding to a given occur-
rence of a variable,

A set of possible representations and accessing methods for var-
iables will be developed; which implementation is used will
depend on what information is available about a particular variable
and when that information becomes known. In general, our aim is to
use, to the best possible advantage, attribute information for a
variable at the time it is declared(whether that is activation-time,
block-entry time, or execution-time as described earlier) in order
to decrease the cost of interpretation. The TFI may produce compiled
code, but without further information about the variables and a set
of possible accessing methods which can take advantage of the known
attribute values, it will meet with a time barrier of the same sort
as full interpretation.

As each method is discussed, we will also mention what must
be declared (such as scope or type) about the variable in order for
that method to work. Usually, the more attributes of a variable

which are declared, the more efficiently can that variable be treated

4B3-9

(rather than just its presence or absence), any statements not using
that attribute will not require changing by the TFI. In the case of
X above, therefore, any statements which accessed but did not store

into X would not require changing if the store monitoring were cancelled

4B3-8

to reasonably efficient but inflexible, Declaration changes in an
active context can affect these representations, and where this situ-

ation obtains, we will present methods for handling it.

The ability to specify that an object is to be monitored in some
way is a form of declaration. By "monitor' we mean that the object
(value, variable, or program) is to be watched so that whenever it is
used in a certain way, that will cause the activation of some proce-
dure. The use which will trigger such an "interrupt" could be further
constrained to be a store into the object, a change in the object, or
accessing (or executing) it, and combinations of these. Of course,
turning monitoring of an object on and off is a ''declaration” which

must be executed and not limited to taking effect only on block entry.

If a variable's being monitored (or not) is considered an attri-
bute, then changing that attribute will invalidate any code which de-
pends on that variable (or object, in general). Thereafter, when
code is created which uses it, the code can include the action of in-
voking a procedure associated with the monitoring of that object
(which procedure was specified when the monitoring declaration was
made). And, if the monitoring is selective, only code which uses that
object in such a way as to satisfy the selected monitoring need in-
clude the extra code to invoke its monitoring procedure. Hence, if
only stores are being monitored for some variable X, accessing X would

include no code to monitor it since accessing causes no stores into X.

When monitoring is discontinued or cancelled, the code invalida-
tion scheme of the TFI is used to cause monitoring code to be replaced.

Moreover, if the monitoring attribute specifies the type of monitoring

4B3-7

which could occur without declarations for the variable being al-
tered. Typeless variables have this property. But such changes
really say that the type of the value of that particular incar-
nation of X is different and may have no connection with the types
of values of previous or future instances of that same variable.

If declarations are deleted, inserted, or altered in an
inactive context, the TFI will still work because any code for the
variables affected by those declarations will be marked as invalid,
forcing reinterpretation of those statements when they are next exe-
cuted. If, however, a declaration is changed which affects one or
more incarnations of an active program (and therefore potentially
one or more incarnations of some variable, D, in the declaration),the
problem is not so simple. Consider the case in which only one in-
carnation of D exists: then that declaration must take effect im-
mediately, in that context, in order to maintain Visual Fidelity of
the program and its execution. This; it will be remembered, was the
primary reason for the introduction of the third '"time" (execution
time) at which declarations could take effect. That is, we are sta-
ting that a declaration which is altered in an active context must
take effect immediately. Moreover, if there is more than one ac-
tive context, the VF principle implies that all the incarnations of
D must be affected — declarations changed in an active context must
be retroactive to suspended contexts in the call hierarchy. Since
this may imply the same set of possible cases as in section 4BSB
above, the same comments apply to each of those active contexts.

In the next section we intend to present several represen-

tations for variables, ranging from very flexible and inefficient

4B3-6

Case (2)

This case is probably the easiest to solve, since the new
X should be used, there being no conflict between the past and present,
at least at the sing.: statement level.
Case(3)

This case presents a conflict between past and present.
The Visual Fidelity Principle indicates that either the old X should
be used in both places, or the new in both places, but not both mix-
ed, since there is nothing in the text of the program to indicate
that the two occurrences of X in the statement represent different
variables., So, in effect, since the past is involved and the old
value of X has already been used, this case degenerates to case (1).
This case must be brought to the user's attention, however, because
of the VF principle. In both cases (1) and (3), another option is
available: tell the user of the problem and hold the change in
abeyance until the end of that statement using the old X if that
is desired, or make the change and disallow completion of the
statement.

We have assumed here that the above cases are detectable
by the system, as will be seen later in
this chapter when the TFI is generalized to handle such dynamic
changes. It is introduced here because of its relevancy to the fol-
lowing section on the representation of variables in an IPS under

the execution/alteration interleaving constraint.

4B3C Declaration Alterations

The above paragraphs dealt with changes to variables

4B3-5

hard to provide, especially if variables can be shared between
programs, for then the following situation can arise:
1 PROCEDURE MAIN;
2 DECLARE Y « 1;
3 FUNCTION F;
A Y+« Y + 1;
3B RETURN Y;
4 X+«Z+Y*F;
Assume that the user intervenes during execution of line 4 with
the "*" about to be executed after F has returned its value. Then
F has permanently changed Y, and redoing statement 4 because Z is
changed by the user, for instance, cannot reverse the side effect
of F in changing Y under any reasonable algorithm for execution.
One would have to be prepared to execute the program backwards

(literally) by having saved a complete history, none of which can

be discarded until an entire program is finished, which decision
could only be made by the user. It must be mentioned here that
Batzer [Bal 69] has developed a system for PL/I programs called
EXDAMS which does allow one to '"pretend'" that a programlis being
run backwards. But it is not interleaved with the execution of the
program and involves essentially playing a '"history tape'" of the
program in reverse.

The main conclusion then is that using the old X is the
only reasonable action in case (1) although one ought to be able

to expect the IPS to inform him of such an event in order that the

user may decide what to do.

4B3-4

(everything to the left of the pointer) and future (everything
from the control pointer to the right); there is no present because
we are speaking of the control pointer at a point in time between
discrete actions, and it is the actions which concern us, not the

time between them,

| Past] Future ¥
Tcontrol pointer
Case 1 X |
Case 2 : X

Case 3 X [X
Figure 4B3R-1: Schematic of Statement Execution
The three cases are

(1) X has been used in the past and will not be used in

the future of this statement;

(2) X has not been used in the past and will be used in the

future of this statement; and

(3) X has been used in the past and will also be used in

the future in this statement.
Case (1)

In case (1), without some overhead it is difficult to use
the new X instead of the old automatically, although the JOSS sys-
tem [Ba 66] actually does just that by not permanently changing the
value or type of a variable until a statement which changes it is
successfully completed. Thus, changes to variables are not effective
until a statement is complete, making it valid to simply redo the
statement if the new X is desired, with assurance that the envir-
onment has not been changed in spite of the partial execution of the

statement. This assurance, in more complicated languages is very

4B3-3

the change can be disallowed, or made so that if control ever at-
tempts to return to the deleted statement, an interrupt or error
action will occur. For statements having a scope of activity, the
problem is more difficult but is solvable again either by disallow=
ing the change or disallowing control to attempt blindly to
return to that point.

Even though checking for a deleted statement on each
return could cause a great deal of overhead, altering an active statement
must be allowed in at least the following case. When an error
occurs during execution of a stored statement,and the USER function
is invoked, he must be able to correct the statement in error even
though control clearly cannot be allowed to return there since the
statement to which control points will have disappeared. But since
the USER function is no different from any other procedure, the fa-
cility of checking this case on each return really is necessary.

Finally, since there is only one copy of the program in
existence at one time, even during recursive use of a function, ad-

hering to the VF Principle is almost trivial.

4B3B Type and Structure Changes to Variables

If no statement is active which accesses some variable,
then simply changing the type or structure attributes of that var-
iable can be handled by the TFI algorithm as it has been defined
thus far. If, however, a statement is active which depends on X,
say, and X is changed, there are three possible cases to consider.
The diagram below represents a control pointer in a

statement dividing the statement, in terms of execution, into past

4B3-2

Visual Fidelity Principle (VFP): the user must be able to

expect that the appearance (text) of a program is a relia-
ble indication of the way that program acts (its semantics).
Let us observe first of all that this is always true in a compiler
system - if not, any deviation is considered a compiler error
and not a programming error. For the same reason, it should be
the case that the appearance (i.e., the text) of an inactive program
decoribes its semantics. However, some questions arise
when speaking of active programs, and these will be declved into
more thoroughly along with the above cases in the following para-

graphs.

4B3A Statement Alteration

Altering a statement in an inactive program is simply the
interactive parsing problem which was discussed in the previous
chapter. And, because of the TFI algorithm, any code which a de-
leted statement possesses must be discarded as well as that from
its parent nodes in the parse tree. The dependency chains of any
variables on which the code of a deleted statement depended must
also be changed to delete those entries, but that presentsno dif-
ficulty since the dependency chain from a symbol table entry is
in fact a ring. Thus, by traversing the chain, the deleted
statement can be reached and removed from the chain.

If an active statement is to be deleted or altered (which
implies a deletion) then the situation is more complex. For sim-
ple statements, such as assignment statements K which have no scope

of action as do a BEGIN or an IF...THEN...ELSE statement, either

4B3-1

4B3 The Binding of Attributes

Throughout our discussions of an IPS, one major piece of philoso-
phy has been the source of many of the system complications with which
we have dealt: the ability to interleave program execution with prog-
ram and data composition and alteration. As has already been remarked ,
facile interleaving is one of the major distinguishable features
between batch and batch-like languages such as FORTRAN and BASIC and
those designed to exploit the capabilities of interaction for the

human user, such as JOSS, APL and LC2.

Since interleaved execution and alteration cén potentially af-
fect one another, complications in the system's bookkeeping can arise.
This increase in internal complexity is tolerable only insofar as it
results in a meaningful decrease in unnecessary detail and overhead
and a meaningful increase in ease of use and flexibility for the user.
Since this impact on the user is the ultimate criterion against which
an IPS must be measured, any design "principles'" must view his require-
ments as a central constraint. This meta-criterion strongly influences
any consideration of the dynamic execution/alteration environment. In
particular, problems arise associated with the addition or deletion of
declarations in a program which is active. Consider the case of a
recursively used procedure having more than one incarnation of itself
and its local variables in the control/context hierarchy. Should a
declaration added to that procedure affect all its incarnations, just
the most recent incarnation, or not be allowed? Since user convenience
is considered central to the issue, one simple principle which must be

observed is the following:

4B2-6

STRUCTCONST = STRUCTVAR " ("' PLEXINIT ")";

PLEXINIT = PLEXCONST $('",'" PLEXCONST);

PLEXCONST = ARRAYCONST / STRINGCONST / VALUE / STRUCTCONST;
Example: COMPLEX(3.2,1.7)

This is a means of creating and initializing instances of
structures to be used as structured constants, or as new incarnations
of variables. When a new incarnation of a variable of lifetime
ALLOCATED is required, the following notation is used:

ALLOCSTAT = "NEW'" ACCESSOR "<«'" STRUCTCONST;

If the entity represented by ACCESSOR is not NIL, then its previous
value will be lost, just as if the counterpart to NEW, vis. DELETE
had been used.

The DELETE statement has the simple syntax

DELSTAT = "DELETE" ACCESSOR;
Examples: DELETE PROG;

DELETE PROG.SONS[1];
The latter example would delete the structure referenced by
PROG.SONS[1] as well as setting PROG.SONS[1] = NIL; if it is desired
to delete the value of PROG.SONS[1] but not what it references, such
can be done by

PROG.SONS[1] < NIL;

4B2E Some Pre-Declared Structure Classes

The system itself, that is its data structures and control
must be describable in this same way. Accordingly, a program, the
symbol table structure, etc., are declarable within the language
itself for bootstrapping purposes. The exact structure of these and

other key structures in an IPS will be detailed later.

4B2-5

TREE[n] example above, all of the following would be valid accessors:
PROG
PROG. INFO
PROG, SONS[2]

An operation similar to subfield accessing is treating an
accessor as a reference to some structure to be accessed; ":" is
used as the operator for this. Thus, if the SONS array_in PROG
referred to a TREE[3] structure, then the following would be allow-
able accessors:

PROG.SONS[2]:SONS[1]

PROG.SONS[1]:INFO
However, PROG.LIST.CAR is also correct, since the LIST component of
TREE[n] is in fact a LISPLIST and not a reference to one. The
complete syntax for ACCESSOR then is

ACCESSOR = SIMPVAR $(("."/'":") SIMPVAR);

The last accessing primitive is that which yields the address of
an ACCESSOR, namely the unary operation a; thus,
B <« o PROG;

would mean B is a reference to the variable PROG after the state-
ment is complete, and

B + «(PROG.SONS[2]);
means that.B would be made a reference to the second element of the
SONS" array in PROG, not the contents of that element.

The other necessary primitives involve creation of new in-
carnations of structures and the destruction of unwanted ones. The
syntax for a STRUCTURE declaration provides a convenient template

for describing an instance of the structure in the following syntax:

4B2-4

STRUCTURE TREE[n] (SONS: REFERENCE ARRAY [n],
ROUTINE: REFERENCE,
INFO: LOGICAL,
LIST: LISPLIST)

In the last example, the structure class is more than one class
since it is parametrized. Examples of the use of structure classes
in declarations are

DECLARE TREE[3] PROG:

DECLARE COMPLEX C1,C2;
which would declare PROG as a TREE[3] structure and Cl and C2 as
structures of type COMPLEX,

4B2D Operations on Structured Data

Ultimately we would like to provide an operator extendibil-
ity feature to match the structure eﬁtendibility outlined above, but
for the present we will only describe an accessing mechanism and a
creation/destruction mechanism for structured data.

Earley has isolated the following primitive operations on
structures (although not with the same syntax); however, the explan-
ations of each are this author's.

The most important action on structured items is the ability
to access their components, whether structures themselves or atom-
ic data. A simple notation for this operation is the dot notation
of PL/I, namely

SIMPVAR = .ID / .ID "[" SUBSCRIPTS ']';

ACCESSOR = SIMPVAR $(".' SIMPVAR);
where each SIMPVAR specifies a subfield of the structure whose name

precedes it, except for the first name of an ACCESSOR. In the

4B2-3

4B2C Structure Class Declarations

In order to extend the number of data types of the system,
a notation and a mechanism are needed for describing a new data
type and the operations on it. As Earley has pointed out in his VERS
paper [Ea 69], there are some operations, mainly accessing, and
creation and destruction which are common to all structures and which
can be viewed as independent of the exact representation of the
data, Examples of this are the sequencing from item to item in a
list structure, the extraction of a field within a table entry, or
the accessing of a particular element in a tree. Standish's thesis
[St 67] is another excellent work on extendible data structures,
a subject of much controversy, and somewhat removed from
the thrust of this work except as a necessary component of a boot-
strappable IPS. Thus we feel no compunction about 'stealing" a
notation for the simpler forms of extendibility, and the following
syntax can be found in both Standish's and Earley's works, as well.
as a report by Wulf and Mitchell [WM 69] for the declaration facil-
ities for a particular IPS.

The syntax for declaring a new structure type follows.

STRUCTURE

"STRUCTURE" STRUCTVAR ''('* PLEXLIST '")";

STRUCTVAR

0$1(.ID 0$1("[" .ID $("," .ID) "]"));
PLEXLIST = PLEX $("," PLEX);
PLEX = 0$1(.ID ":") SIMSTRUCT;
SIMSTRUCT = ARRAYATTR/STRING/TYPE/STRUCTURE ;
Some examples are
STRUCTURE COMPLEX (RP: REAL, IP:REAL)

STRUCTURE LISPLIST (CAR:REFERENCE, CDR:REFERENCE)

4B2-2

variable is created.
Examples: DECLARE REAL ARRAY[10] B;
DECLARE ARRAY[10,-3:3,0:4] C, D;
Accessing an array element is the conventional notation
ARRAYNAME "['" EXP $("," EXP) "]"

with an additional notation for extracting subarrays in which any
subscript position may be omitted or expressed as a bounds pair.
When omitted, that subscript position is assumed to range over its
declared bounds; if a bounds pair such as i:j is given, then that
subscript position ranges from i to j inclusive. In this way, we
can name ''rectangular' subsections of arrays. The notation of
APL [IF 68] which allows any subscript to be a sequence of single
values is more general than this and is also allowed; the above no-
tations are intended for common cases.
4B2B Strings

Strings, as opposed to vectors of characters, are elastic
sequences of atomic types. Elasticity means that they have no pre-
determined length and may be altered by inserting or deleting other
strings of length zero or greater, expanding or contracting in the
process in order to remain logically contiguous. Since strings can
be composed of any atomic type, in many ways they can behave like
lists. Some of the attributes of a string which must be available
are its length, and, if accessing the i'th element, an indication
of whether or not it is past the end of the string. Strings are
assumed to be homogeneous, i.e., only one type is allowed as the

atomic units of a string.

4B2-1

4B2 Structured Data

Bootstrapping an IPS places demands not only on the efficien-
cy of the system, but also places a strong requirement for flexibil-
ity of data structures on it. Data such as symbol tables, parse
trees, machine code, etc., must be describable and manipulable; that
is, not only must we be able to describe complex data structures
and access their various components, we must also be able to define
new operations on them and extend previously available operations
to them., This has benefits for the user as well as the system buil-
ders as has been demonstrated by the ''contagious"
quality of Iverson's APL.

Three main items will be dealt with in this section. The
first is simply the definition for the standard structured data
available in almost all programming languages. Among these are
homogeneous arrays, strings, etc. The second concern is the "theft"
cf some notation for speaking of extensible data structures and
operations on them. Lastly, we will give examples of some system
defined structures of note,
4B2A Arrays

An array is a set of values all of the same type, with in-
dividual elements being accessed by a sequence il""’ik of length
k =(the number of dimensions of the array). The notation for declar-
ing an array within a declaration is simply

ARRAYATTR = "ARRAY" "['* BOUNDS $(",'" BOUNDS) "]";

BOUNDS = 0$1(EXP ':") EXP;

The time at which the bounds expressions are evaluated can

be thought of as the time at which an incarnation of the array

4B1-7

Some of these combinations are very interesting. For example,
SECONDARY AUTOMATIC would describe a temporary ''file" whose lifetime
was that of the block/routine in which it was declared.

4B1-6

4B1G peclaration Notation

For most cases, it is desirable that only what is necessary
for the declaration of a variable need be stated. Naturally, it
may be the case that many variables will never be explicitly de-
clared, but for reasons of efficiency and completeness, declarations
are very necessary addenda to many programs. When a declaration is
used, it has the following syntax:

DECL = "DECLARE" ATTRLIST IDLIST;

IDLIST = .ID $("," .ID);
where ATTRLIST is a list of attribute-values, separated by blanks,
with zero or one attribute-values for each possible attribute (ex-
cept for the protection attribute which may have up to three). The
list of sets below gives some notion of the possible combinations.,
Those values which are underlined are the defaults which the author
would like chosen when no value for that attribute is specified. In
general, we believe that defaults are a matter of personal choice
and ought to be specifiable by the user. The command language CL-I1I
of TSS/360 [IBM 69] is a good example of an IPS which can be easily
tailored by the user to appear as he feels best.

The alternatives, grouped by attribute are the following:

attribute.s Orage prOtECtion SCDPB 1ifetime tYPe
'c%ass
GENERAL
NOREAD LOCAL) (AuTomarIC) (MNTEGER
MAIN NOWRITE | |SecreT | |staTic REAL
values: _ LOGICAL
SECONDARY) |NOEXECUTE(|GLOBAL | JALLOCATED
CHARACTER

EXTERNAL
REFERENCE

4B1-5

In an IPS there is one other
type which, while not really simple, is basic to the notion of type-
less variables, namely, type GENERAL. This is the default type as-
sumed by all non-declared variables, although one can envision its
use in a declaration even for compiled programs.
4B1F Value

The actual value of a variable is normally not considered

as an attribute in the sense of scope, type, etc. primarily because
a variable is used precisely because its value is not
bound to be a specific number . Of course, many iter-
ative procedures can be thought of as existing solely for the purp’se
of constraining the values of certain variables to lie within
tighter and tighter boundsj however, that is outside our range of
interest here. An application of the binding of a specific value
to a variable which has some use is the naming of constants by bind-
ing a name, by declaration, to a specific value. Thus, one might
say

DECLARE REAL A « 3.2;
as a declaration which also causes A to be initialized to the value
whenever an incarnation of it is created, or

DECLARE REAL A = 3.2;
to designate that A is simply another name for the constant 3.2, and

any machine instructions which are available to make use of such

constancy may be used by the system whenever A is used in the proprem.,

4B1-4

4B1E Type

The most common use of declarations in programming languages is
the assigning of types to variables. Simple types usually are those
which have been representable and able to be operated on by the com-
puter hardware. These include entities such as integers, floating-
point numbers, characters, and logical values (bit strings) as well
as addresses or pointers. We will denote these as INTEGER, REAL,

CHARACTER, LOGICAL and REFERENCE respectively.

4B1-3

known only to the block in which the declaration appears, and are
not known by its containing or contained blocks, whether in a
lexical or dynamic sense; to other super- and sub-blocks it isas
if there were no declaration of that variable in that block.
LOCAL corresponds to the normal scope rules of Algol 60 where only
lexical scope is concerned; and EXTRENAL exists in a number of time-
sharing systems (TSS/360, MULTICS) and is used for sharing programs
and data between processes whether belonging to the same user or to

different users.

4B1D Lifetime
The lifetime of a variable corresponds to how long a given incar-

nation remains in existence and is accessible. That lifetime can be

one of:

STATIC: only one incarnation of the variable remains, existing as
long as the program comprising its maximal scope exists; this
lifetime corresponds to that of varizbles in Fortran and to
Algol own — although own also implies a local scope;

AUTOMATIC: each time the block/procedure which is an AUTOMATIC var-
iable's maximal scope is entered, a new incarnation of that var-
jiable is created; upon exit from that block (i.e., when that in-
carnation of the procedure or block ends itself) the correspon-
ding incarnation of the variable disappears;

ALLOCATED: an incarnation for the variable will be made when it is
first used, and may be explicitly deleted when the program no
longer requires the information associated with that variable; of

course, it can'then be subsequently reassigned a value and be

reincarnated.

4B1-2

Since data and programs are treated in only three primitive ways
in computers (namely, being read, written, executed — and combinations
thereof), we choose simply to protect against these primitive actions
by allowing the following attribute-values, in any combination of
zero or more in declarations: NOREAD, NOWRITE{ and NOEXECUTE. The

meanings of combinations of these are specified in the following table:

PROTECTION INTERPRETATION

NOREAD {NOWRITE {NOEXECUTE| dead, inaccessible space

NOREAD {NOWRITE | pure procedure - execute only
NOREAD INOEXECUTE | write-only data
NOREAD j modifiable but uninspectable code
NOWRITE {NOEXECUTE| read-only data
NOWRITE§ inspectable pure procedure

INOEXECUTE | unexecutable data

% unprotected data or program

Figure 4B1B-1: Protection Combinations

4B1C Scope

The scope of a variable may be one of the following:

LOCAL: known only to the block or routine in which the declaration
lexically appears along with all its lexically contained and po-
tentially its dynamically contained blocks/procedures;

GLOBAL: each block/procedure which declares some variable (A, say) as
GLOBAL then uses the same variable A;

EXTERNAL: variables declared EXTERNAL are shared among processes (whe-
ther inter- or intra-user) in the same manner as GLOBAL variables
between separate procedures in a single process;

SECRET:! as mentioned earlier, variables whose scope is SECRET are

Tra — A

4B1 Attribute Sets

In this section some of the basic attributes and their corres-
ponding value sets will be outlined. A following section will deal
with a number of implementations and accessing methods for various

attribute-value combinations.

4B1A Storage Class

The storage class of a variable declares where it will reside, and
can be either MAIN or SECONDARY; data structures normally residing on
secondary storage (drums, disks, tapes, etc.) are the equivalent of
files or data-bases. Normally program and data structures reside in
main memory, which is the only place where they are directly acces-
sible and/or executable. Thus, the use of a function F whose storage
class attribute-value is SECONDARY would imply the invocation of a

transfer function to create a copy of it in main memory for execution.

Clearly, on a particular computer system, these declarations
ought to be parametrizable over the various types of main or secondary
storage. Nevertheless, the user should be able to specify the simplest

options with the IPS concerning itself with the details.

4B1B Protection

Although protection is certainly necessary in single-user as well
as multi-user IPS environments, the scope of the problem is too large
for the present discussion. However, within a specific process it is
still reasonable to protect data structures and programs from one
another. A simple means of accomplishing this is to allow declarations

to contain protection options.

(2)

(3)

(4)

(5)

(6)

@)

4B-2

which the variable is to reside;

values: MAIN, SECONDARY

protection: the manner in which a variable may be accessed, ei-
ther by its containing process or other processes (possibly be-
lenging to different users);

values: NOREAD, NOWRITE, NOEXECUTE

scope: the limits (lexical or dynamic) within which a specific
variable is known;

values: LOCAL, SECRET, GLOBAL, EXTERNAL

lifetime: the length of time from creation of a specific incarna-
tion of a variable until its destruction;

values: AUTOMATIC, STATIC, ALLOCATED

type: the form and semantic meaning of the variable with respect
to specific classes of operations; €.g., arithmetic, string, etc,;
values: GENERAL, REAL, INTEGER, CHARACTER, LOGICAL, REFERENCE
value: the actual value of the variable; in general, this is the
last thing which is bound (if ever);

structure: the number and form of the individual values which a
variable represents,

values: ARRAY[n], SCALAR, LIST, etc.

These attributes will be discussed in detail in the remainder of

this section. We will investigate the possible values of each of

these attributes (called attribute-values), the binding of attribute-

values to variables, and the representation and accessing of variables

for various attribute-value combinations.

4B-1

4B Attributes of Variables

As in a compiler system, the semantic attributes of variables in
an IPS are directly connected with the potential representations pos-
sible for them. Since variables in an IPS can exist in different
stages of declaration (at different times, of course), we must be con-
cerned primarily with two things:

(1) representing a variable in the most efficient manner possible

for the set of attributes ascribed to it either by context or by

declaration, consistent with the flexibility to vary unstated at-
tribute values;

(2) allowing the representation to vary as declarative infor-

mation (however obtained) appears or is withdrawn.

This last requirement is simply the interpreter/compiler philosophy
restated for the case of data structures. Requirement (1) is essen-
tially a challenge to the implementers and designers of interactive
systems to find representations for variables which can take advantage
of many different combinations of attribute values for variables.
Ideally, we should like to develop a method for moving representations
in that multi-dimensional space as the TFI does with programs. For
the present, however, we will simply define a subset of the possible
representations and accessing methods for variables whose attribute

values are partly known.

The attribute values which describe a variable are chosen from a
set of attributes and possible values for them. The main attributes
to be discussed are the following:

(1) storage class: the type of memory (active or passive) within

