
USENIX Association

Proceedings of BSDCon ’03

San Mateo, CA, USA
September 8–12, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Running BSD Kernels as User Processes by Partial Emulation

and Rewriting of Machine Instructions

Hideki Eiraku
College of Information Sciences, University of Tsukuba

hdk@coins.tsukuba.ac.jp, http://www.coins.tsukuba.ac.jp/~hdk/

Yasushi Shinjo
Institute of Information Sciences and Electronics, University of Tsukuba

yas@is.tsukuba.ac.jp, http://www.is.tsukuba.ac.jp/~yas/

Abstract

A user-level operating system (OS) can be im-
plemented as a regular user process on top of an-
other host operating system. Conventional user-
level OSes, such as User Mode Linux, view the un-
derlying host operating system as a specific hard-
ware architecture. Therefore, the implementation
of a user-level OS often requires porting of an ex-
isting kernel to a new hardware architecture. This
paper proposes a new implementation method of
user-level OSes by using partial emulation of hard-
ware and static rewriting of machine instructions.
In this method, privileged instructions and their re-
lated non-privileged instructions in a native oper-
ating system are statically translated into subrou-
tine calls that perform emulation. The translated
instructions of the user-level OS are executed by
both the real CPU and the partial emulator. This
method does not require detailed knowledge about
kernel internals. By using the proposed method,
NetBSD and FreeBSD are executed as user processes
on NetBSD and Linux.

1 Introduction

Running multiple operating systems (OSes) si-
multaneously over a single hardware platform has
recently become a popular system structuring ap-
proach that offers a number of benefits [SVL01]
[Pap00] [Dik00]. First, application programs writ-
ten for different operating systems, such as Unix and
Windows, can be simultaneously executed on a sin-
gle computer. Second, several versions of a single

operating system, such as MacOS9 and MacOSX,
can co-exist on the same platform. Other benefits in-
clude virtual hosting and easier system management
and maintenance [HH79] [SVL01] [Pap00] [Dik00].

There are two prominent approaches to run-
ning multiple operating systems over a single hard-
ware platform: Virtual machines [LDG+03] [Law03]
and user-level operating systems [Dik00] [AAS94]
[Tad92]. Virtual machines provide isolated exe-
cution environments for multiple operating system
kernels, which can run over the native hardware.
A user-level operating system is an operating sys-
tem that runs as a regular user process on another
host operating system. Conventional user-level OSes
view the underlying host operating system as a spe-
cific hardware architecture. Therefore, the imple-
mentation of a user-level OS often requires porting
of an existing kernel to a new hardware architec-
ture. For example, User Mode Linux (UML) [Dik00],
which is a user-level OS that runs on Linux and pro-
vides another Linux system image, adds a new archi-
tecture called um based on the i386 architecture. In
general, such porting involves significant implemen-
tation effort, and requires detailed knowledge about
the kernel and the base and new architectures. In
porting of User Mode Linux, the size of the new um-
dependent part is 33,000 lines while the size of the
base i386-dependent part is 40,000 lines.

In this paper, we propose a new implementation
method of user-level OSes with partial emulation of
hardware and rewriting of machine instructions at
compile time. The key idea is to enable the exe-
cution of most instructions by the real CPU with
the exception of privileged instructions, hardware
interrupts, and the interaction with some peripheral

devices, which are emulated. We call this type of
emulator a partial emulator or a lightweight virtual
machine (LVM) because such a program does not
have to emulate typical instructions, such as load,
store, and arithmetic operations. In contrast, we re-
fer to an emulator that executes all instructions as
a full emulator.

In our implementation method, we emulate all
privileged instructions. In addition, we emulate
some non-privileged instructions that are tightly re-
lated with the privileged instructions. It is easy to
detect execution of privileged instructions because
the real CPU throws privilege violation exceptions.
However, it is not trivial to detect execution of such
non-privileged instructions.

To solve this problem, we use static rewriting of
machine instructions at compile-time in two ways.
One way is to insert an illegal instruction before each
non-privileged instruction to be detected. Another
way is to replace privileged instructions and related
non-privileged instructions with subroutine calls for
emulation. The translated instructions of a user-
level OS are executed by both the real CPU and the
partial emulator. By using our proposed method,
we can generate a user-level OS based on a native
OS without detailed knowledge about user-level OS
internals. Furthermore, we can catch up the evolu-
tion of the base native OS easily. One disadvantage
of our method is that we require source code of the
user-level OS.

By using the proposed method, NetBSD and
FreeBSD kernels are executed as user processes on
NetBSD and Linux. Our user-level NetBSD on
Linux is faster than NetBSD on Bochs [LDG+03],
a full PC emulator, by a factor of 10. However,
our user-level NetBSD is slower than NetBSD on
VMware and User Mode Linux on Linux. From the
experiments results, we show that the main sources
of slowdown are the emulation of memory mapping
hardware and the redirections of system calls and
page faults.

The rest of the paper is organized as follows. Sec-
tion 2 summarizes related work. Section 3 describes
the emulation of privileged and non-privileged in-
structions, the redirections of system calls and page
faults, and the emulation of memory mapping hard-
ware. Section 4 shows modifications of the NetBSD
kernel for hosting our partial emulator. Section 5
describes modifications of the NetBSD kernel and
the FreeBSD kernel for running as user processes.

Section 6 shows the performance of the user-level
NetBSD. Section 7 shows future directions, and Sec-
tion 8 concludes the paper.

2 Related work

Running OSes as user-level processes has been
proposed in the context of microkernel system re-
search. For example, the Mach microkernel hosts
BSDs, Linux, Hurd, and other systems [GDFR90].
In a microkernel-based system, the kernel pro-
vides primitive interprocess communication, mem-
ory management, and CPU scheduling. The OS
servers outside the kernel implement file systems,
network protocols, etc.

It is much easier to implement an OS server on
a microkernel than to implement a monolithic ker-
nel for bare hardware. However, in the case when
we already have a native kernel for bare hardware,
we have to port the native kernel to the microker-
nel. This porting sometimes involves significant ef-
fort. A native kernel accesses hardware directly and
uses interrupts and privileged instructions. Access-
ing hardware should be replaced with using micro-
kernel’s facilities. In this paper, we show a method
that translates a native kernel for bare hardware into
a user-level OS with less effort.

The idea of nesting operating systems or vir-
tual machines had appeared even in early virtual
machines for mainframes [HH79] [LW73]. Aper-
tos is a modern object-oriented operating system
that supports nesting of operating systems or meta-
objects[Yok92]. Fluke is another modern operating
system [FHL+96]. Fluke also supports efficient nest-
ing or recursion with a microkernel technology. Both
Apertos and Fluke have been designed to support
nesting from scratch. Our method deals with com-
modity operating systems that are designed to run
on bare hardware.

Instructional operating systems are often designed
as user-level operating systems. SunOS Minix
[AAS94] and VXinu [Tad92] have different struc-
tures from their native systems, PC Minix and PDP-
11 Xinu, respectively. In our method, a user-level
operating system has the same structure as the cor-
responding native operating system.

Plex86 is a virtual machine for Pentium [Law03].

Plex86 uses a special protection mechanism of Pen-
tium, which is also known as Protected Mode Virtual
Interrupts (PVI). To use this mechanism, Plex86
needs a kernel module. Plex86 provides hardware
access, such as disks and networks, via a Hardware
Abstraction Layer (HAL). Compared with Plex86,
our approach differs in that we use a language pro-
cessor (the assembler preprocessor), and we rewrite
machine instructions of a user-level OS statically.

Some BSD kernels [HMM03] [LF03] have the fa-
cility to emulate other operating systems, such as
Linux. In such environments, application programs
written for different operating systems can be si-
multaneously executed on a single computer. Vir-
tual machines and user-level OSes, including our
approach, allow executing not only application pro-
grams but also operating system kernels.

Rewriting of machine instructions is used for ad-
dress sandboxing with software [WLAG93]. To en-
force a module to access a range of memory, this
method inserts some masking instructions before
each load or store instruction. In this paper, we
use rewriting of machine instructions for realizing
user-level OSes.

3 Running a user-level OS by partial
emulation and rewriting of machine
instructions

In this section, we propose a new implementation
method of a user-level OS by using partial emulation
of hardware and static rewriting of machine instruc-
tions. In this method, we have to solve the following
problems:

• Detect and emulate privileged instructions and
some non-privileged instructions.

• Redirect system calls and page faults to the
user-level OS.

• Emulate Memory Management Unit (MMU).

• Emulate essential peripheral devices.

The host OS
(NetBSD or Linux)

T
he real C

P
U

: execution of machine instructions

: service of system calls

: a user process of the host OS

The user-level OS
(NetBSD or FreeBSD)

A user
process of
the user
level OS

A user
process of
the user
level OS

A user
process of
the user-
level OS

Other
processes
(host OS)

Other
processes
(host OS)

Other
processes
(host OS)

T
he partial em

ulator
(a lightw

eight V
M

)

Figure 1: Running an user-level operating system
and its user process by the real CPU and a partial
emulator.

3.1 Detecting execution of privileged in-
structions and some non-privileged
instructions

Although an operating system kernel includes
privileged instructions, most parts are built from
non-privileged instructions. If we can prepare an
appropriate address space for the kernel, we can ex-
ecute the most parts of the kernel by the real CPU,
directly. The rest of the tasks are emulation of hard-
ware and execution of privileged instructions. In
this case, we have to emulate only a small num-
ber of CPU instructions and peripheral devices be-
cause most CPU instructions are executed by the
real CPU. We call this type of emulator a partial
emulator or a lightweight virtual machine.

Figure 1 shows execution of a user-level OS by
the real CPU, the host OS, and the partial emula-
tor. The user-level OS and its own user processes are
included in a regular process of the host OS. Reg-
ular processes of the host OS are served with the
real CPU and the host OS. The real CPU executes
their machine instructions, and the host OS handles

system calls. In addition to the real CPU and the
host OS, the user-level OS and its user processes
are interpreted by the partial emulator. This par-
tial emulator emulates privileged instructions and
some peripheral devices, but it does not emulate
normal instructions, such as arithmetic operations,
load, store, and branch instructions. This is in con-
trast to full emulators, such as Bochs, which execute
all CPU instructions.

A full emulator is independent of the underlying
CPU, so it can execute machine instructions of an-
other CPU. On the other hand, a partial emulator
is dependent on the underlying CPU to directly exe-
cute machine instructions. Within this limitation, a
partial emulator has an advantage over a full emula-
tor in that application programs with no privileged
instructions can run as fast as the real CPU. Fur-
thermore, it is much easier to implement a partial
emulator than to implement a full emulator.

The real problem on emulation is to detect the
executions of some non-privileged instructions that
are tightly coupled with corresponding privileged in-
structions. For example, ltr (load task register) of
IA-32 is a privileged instruction while str (store task
register) is a non-privileged instruction. We have to
detect the executions of both ltr and str.

To detect execution of such non-privileged instruc-
tions, we use the following two methods:

insertion: Insert an illegal instruction statically be-
fore every non-privileged instruction to be de-
tected.

rewriting: Rewrite the non-privileged and privi-
leged instructions with subroutine calls that em-
ulate these instructions.

3.1.1 Inserting an illegal instruction

In the insertion method, we insert an illegal instruc-
tion for each non-privileged instruction to be de-
tected. The following is an example of insertion:

Before:

str %eax

After:

.byte 0x8e, 0xc8

str %eax

:

:

· execute a privileged
instruction or an illegal
instruction

· execute the next
instruction

:

· wait for child stopped

:

· return from wait()

· read registers including PC

· Emulate the instruction

· set registers

· continue the execution

· wait for child stopped

:

notify

The partial emulatorA user-level OS

ptrace()

ptrace()

ptrace()

wait()

Figure 2: Execution of a privileged instruction or
an illegal instruction by the partial emulator in the
insertion method.

Since the byte sequence ”0x8e, 0xc8” works as
an illegal instruction in IA-32, we can detect the ex-
ecution of the str instruction in the parent process
of the user-level OS through the signal facility and
the process trace facility. The parent process is the
partial emulator.

Figure 2 shows execution of a privileged instruc-
tion or an inserted illegal instruction by the partial
emulator. The partial emulator is a parent process
of the user-level OS, and it is usually waiting for the
child process being stopped with the wait() sys-
tem call. When the user-level OS executes a priv-
ileged instruction or an inserted illegal instruction,
the partial emulator is notified as if the child process
received a signal (SIGILL). Next, the partial emula-
tor reads the registers including the program counter
with the ptrace() system call, and fetches the in-
struction pointed by the program counter. If the in-
struction is a privileged instruction, it is handled by
the partial emulator. If the instruction is an inserted
illegal instruction, the partial emulator fetches and
handles the next instruction. After that, the partial
emulator adjust the program counter by setting the
registers with the ptrace() system call. Finally,
the partial emulator continues the execution with
the ptrace() system call, and is going to wait for
the child process being stopped again. In summary,
the partial emulator has to issue four system calls
for each execution of a privileged or non-privileged
instruction to be detected.

We have implemented a partial emulator for IA-32
based on the proposed method. The partial emula-
tor consists of 1,500 lines of C code and 30 lines
of assembly language code. Our partial emulator

is much smaller than Bochs that consists of 50,000
lines of C++ code.

We have also implemented an assembler prepro-
cessor for rewriting machine instructions. For IA-32,
this preprocessor rewrites the following instructions:

• The mov, push, and pop instructions that ma-
nipulate segment registers (%cs, %ds, %es, %fs,
%gs, and %ss).

• The call, jmp, and ret instructions that cross
a segment boundary.

• The iret instruction.

• The instructions that manipulate special regis-
ters, such as the task register.

• The instructions that read and write the flag
register.

3.1.2 Rewriting with subroutine calls

In the insertion method, the partial emulator has to
issue four system calls for each execution of a privi-
leged or non-privileged instruction to be detected, as
described in Section 3.1.1. We eliminate this over-
head by rewriting the privileged and non-privileged
instructions with subroutine calls that emulate these
instructions. An example of rewriting follows:

Before:

mov %eax, %cr3

After:

call mov_eax_cr3

The subroutine mov eax cr3 performs emulation
of the instruction. We also perform inlining for sim-
ple instructions. Our newer partial emulator con-
sists of 800 lines of C code in the different address
space, and 250 lines of C code and 300 lines of as-
sembly language code in the same address space as
a user-level OS.

3.2 Redirection of system calls and page
faults

When a user process on a user-level OS issues a
system call or causes a page fault, the host OS should
not interpret the event by itself. Instead, the host

A user process

system
call

A host operating system

A user-level OS

(a) Redirection by a host operating system

page
fault

Mach
IPC

A user process

system
call

A user-level OS
(an OS server)

(b) Changing events to IPC messages in Mach

page
fault

library

Linux or modified NetBSD

(c) Our current implementation of redirection

page
fault

A user
process

system
call

A user-
level OS

The partial
emulator

an external
pager

signals

ptrace()

wait()

The Mach Microkernel

Mach IPC
redirect

trap
frame

Figure 3: Redirection of system calls and page faults.

OS should notify the user-level OS of the event (a
system call or page fault). If the host OS provides
a redirection mechanism, this is an ideal mechanism
for a user-level OS (Figure 3 (a)).

The Mach microkernel [GDFR90] includes a redi-
rection mechanism of system calls for executing Unix
binaries. When a user process (task) of Unix issues a
system call, the Mach microkernel sends back a mes-
sage to the same task (Figure 3 (b)). The user task
includes the support module that receives the mes-
sage from the microkernel, and performs an RPC to
the remote Unix server. The Mach microkernel has
a similar mechanism for handing page faults. This
mechanism is called an external pager [GDFR90].

To implement the system call redirection, we use

the process trace facility of Linux at first. In
Linux, if a parent (or tracing) process specifies
PTRACE SYSCALL to the system call ptrace(), the
child (or traced) process continues execution as for
PTRACE CONT1, but it will stop on entry or exit of the
system call.

When the child process is stopped, the parent pro-
cess can examine and modify the CPU registers and
arguments or results of the system call. Solaris and
other Unix System V also have a similar facility
through the /proc filesystem.

The procedure for redirecting system calls is simi-
lar to that for handing privileged and non-privileged
instructions described in Section 3.1.1. When a user
process of a user-level OS issues a system call, the
process of the host OS is stopped on entry of the
system call (Figure 3 (c)). The partial emulator
changes the system call number with an illegal one
and continues the execution. Next, the host OS tries
to execute the body of the system call in a regular
way. However, the host OS cannot execute it be-
cause the system call number is wrong. Therefore,
the host OS sets an error value and notifies the par-
tial emulator of exiting of the system call. Next, the
partial emulator prepares an interrupt frame on the
user-level OS. Finally, the partial emulator changes
the program counter and switches to the user-level
OS.

Page faults (SIGSEGV) are handled in a similar way
as system calls. A difference is that the partial em-
ulator has to send a signal to get values of some
control registers when the host OS is Linux. In the
partial emulator described in Section 3.1.2, the sig-
nals (SIGSEGV) are handled by the partial emulator
code in the user-level OS. Therefore, we can reduce
the overhead of context switches between the user-
level OS and the partial emulator.

3.3 Emulation of Memory Management
Unit

In IA-32, operations of MMU (Memory Manage-
ment Unit) are performed thorough the register cr3
(Control Register 3). IA-32 uses two-level page ta-
bles. The register cr3 holds the physical address of
the top level page table called Page Directory [Int97].

To emulate MMU and build address spaces for the
1PT CONTINUE in BSD.

0x00000000 (lower)

0xffffffff (upper)

Text

Emulator code
and data

User-level OS

Host OS

Data

Stack

F
or a user process of

the user level O
S

Figure 4: The address space of the user-level OS.

user-level OS and its user processes, we use the sys-
tem calls mmap() and munmap(). When the content
of the register cr3 is changed, the partial emulator
first compares each entry of the new page table with
that of the previous page table. If a new page ta-
ble entry no longer has a page, the partial emulator
unmaps the corresponding page with the system call
munmap(). If a new page table entry has a new page,
the partial emulator maps the page with the system
call mmap(). Otherwise, the partial emulator does
nothing.

To emulate MMU with the system calls mmap()
and munmap(), we have to solve the following prob-
lem in the insertion method (Section 3.1.1). These
system calls should be invoked by the process of the
user-level OS. These system calls manipulate the ad-
dress space of the issuing process itself, and the par-
ent or tracing process cannot manipulate the child
or traced process.

To solve this problem, we embedded a support
module in the address space of the user-level OS.
Figure 4 shows the address space of the user-level
OS. The lower regions of the address space are for
user processes of the user-level OS (Text, Data, and
Stack). The upper end is used by the host OS, and
cannot be used by the user-level OS. Below the host
OS region, there is a region for the user-level OS.
We allocate a space for the mmap/munnap module
between the host OS region and the user-level OS
region.

When the partial emulator detects the manipula-
tion of MMU (setting a value to the register cr3),
the partial emulator compares the old and the new

page table. Based on the differences between the
old and the new page table, the partial emulator
makes an issuing plan of the system calls mmap()
and munmap(), and stores the plan to the region of
the emulator code and data in the address space of
the user-level OS (Figure 4). After that, the partial
emulator changes the program counter of the child
process (the process executing the user-level OS) to
the code of the partial emulator in the address space
of user-level OS, and switches to the user-level OS.
In the user-level OS, the emulator code issues the
system calls mmap() and munmap() according to the
plan. The partial emulator (the parent process) does
not intercept these system calls and allows passing
them to the host OS. Finally, the code executes a
special instruction (int $3) to switch to the partial
emulator. The partial emulator changes the pro-
gram counter to the next instruction of the MMU
operation, and continues execution.

We have described the procedure for the insertion
method (Section 3.1.1). In the rewriting method
(Section 3.1.2), MMU emulation is performed by the
subroutines in the same address space as the user-
level OS. The partial emulator in the separated ad-
dress space does nothing about MMU emulation.

In both procedures, comparing the old and the
new page table and issuing the system calls mmap()
and munmap() are heavy tasks, and they are big
sources of performance degradation. We will show
the experimental results about MMU emulation in
Section 6.

3.4 A console, a timer and a disk

The current partial emulator provides minimum
peripheral devices: the keyboard for input, the video
RAM for console output, and the timer for periodic
interrupt.

For persistent storage, we have developed a small
device driver that is derived from the memory disk
driver of NetBSD. The memory disk of NetBSD is a
block device, and it does not use interrupt for I/O.
Instead, the memory disk reads and writes a mem-
ory reason in the kernel. We have changed these
operations with the partial emulator calls (Section
3.1.1) or the system calls for the host OS (Section
3.1.2).

4 Modifying NetBSD for hosting the
partial emulator

At first, we settled our goal to implement our par-
tial emulator to run NetBSD on Linux. We chose
NetBSD because it supports many hardware archi-
tectures, and each architecture-specific part seems
small. We chose Linux because Linux already had
User Mode Linux, so it was obvious that Linux has
enough facilities for running a user-level OS. How-
ever, porting the i386-dependent part of NetBSD to
the Linux architecture was not easy for us. There-
fore, we have developed the techniques with partial
emulation and rewriting of machine instructions.

After we had succeeded in running NetBSD on
Linux, we started running NetBSD on NetBSD. We
found that the unmodified NetBSD does not pro-
vide enough facilities to implement our partial emu-
lator. The ktrace facility of NetBSD can be used to
record events of entering and exiting of system calls.
However, the ktrace facility does not allow stopping
traced processes and changing registers and memory.

To run NetBSD on NetBSD, we decided to add
a new facility to the host NetBSD kernel. The ba-
sic task is to introduce the PTRACE SYSCALL facility
of Linux to NetBSD. In the following subsections,
we will show our modifications to NetBSD 1.6.1 in
detail.

4.1 Modifications of the core part of
NetBSD

We have modified the following three files in the
core part of NetBSD (the architecture-independent
part of NetBSD):

• sys/proc.h

• sys/ptrace.h

• kern/sys process.c

We have added the following flag to the struct
proc in proc.h:

#define P_SYSTRACED 0x800000

/* System call is traced. */

We have added the following request for the sys-
tem call ptrace() in the file ptrace.h:

#define PT_SYSCALL 12 /* Continue and stop

at the next (return from) syscall. */

The flag and the request are used by the function
sys ptrace() of sys process.c in the core part
and the function syscall plain() of syscall.c in
the i386 architecture-specific part.

To the function sys ptrace() in sys process.c,
we have added some lines for the request PT SYSCALL
next to the request PT CONTINUE. The essential dif-
ference between PT SYSCALL and PT CONTINUE fol-
lows:

if (SCARG(uap, req) == PT_SYSCALL) {

SET(t->p_flag, P_SYSTRACED);

} else {

CLR(t->p_flag, P_SYSTRACED);

}

If the request for the system call ptrace() is
PT SYSCALL, we set the flag P SYSTRACED to the
traced process. Otherwise, we clear the flag.

In addition to the above modification, we have
defined a new function as follows:

process_systrace(p)

struct proc *p;

This function is called from the entry point and
the exit point of the system call when the flag
P SYSTRACED is set. This function stops the current
process (the traced process) as if it would receive
the signal SIGTRAP. If the tracing process is sleep-
ing typically by issuing the system call wait(), the
current process wakes up the tracing process.

4.2 Modifications of the i386-dependent
part of NetBSD

We have modified the following three files in the
i386-specific part of NetBSD:

• arch/i386/i386/syscall.c

void syscall_plain(frame)
struct trapframe frame;

{
...
p = curproc;
if (ISSET(p->p_flag, P_SYSTRACED)) {

CLR(p->p_flag, P_SYSTRACED);
process_systrace(p);

}
code = frame.tf_eax;
callp = p->p_emul->e_sysent;
...
code &= (SYS_NSYSENT - 1);
callp += code;
...
error = (*callp->sy_call)(p, args, rval);
...
if (ISSET(p->p_flag, P_SYSTRACED)) {

CLR(p->p_flag, P_SYSTRACED);
process_systrace(p);

}
userret(p);

}

Figure 5: Checking of the P SYSTRACED flag on entry
and exit of the system call.

• arch/i386/i386/process machdep.c

• arch/i386/include/reg.h

We have inserted the invocation of the
function process systrace() to the function
syscall plain() in the file syscall.c, as shown
in Figure 5. This function fetches the system call
number in the register eax and calls the body of
the system call by consulting the jump table in the
p->p emul->e systent. Before getting the system
call number from the register eax, we check if the
flag P SYSTRACED is set. If it is set, we call the
function process systrace() which is described
in Section 4.1. The same function is also called at
the end of the function before returning to the user
mode.

Moreover, we have changed the files
process machdep.c and reg.h, and extended
struct reg for the PT GETREGS request of the
system call ptrace(). In addition to regular
registers for debugging, we need other values in
control registers and the trap frame. For example,
the register cr2 in PCB (Process Control Block) and
the trap number are needed by the partial emulator.
In Linux, we used a signal facility to get these
values. If we set the program counter to an illegal
address, the process receives a signal. At this time,
the values that are needed by the partial emulator
are pushed on the stack. In NetBSD, we did not
use a signal facility. Instead, we extended struct
reg in the request PT GETREGS of the system call

ptrace().

5 Modifications to NetBSD and
FreeBSD for running as user-level
operating systems

In the implementation of a user-level OS, the final
goal is to generate the user-level OS from the corre-
sponding native OS for the bare hardware automati-
cally. However, we had to slightly modify the native
NetBSD and FreeBSD. In this section, we show the
modifications to NetBSD and FreeBSD for running
them as user-level OSes.

5.1 Modifications to NetBSD for run-
ning as a user process

We ran NetBSD 1.5.2 as a user process by
changing 6 constants to adjust the address space
and removing device drivers from the configuration
file. The base address of NetBSD is changed from
0xc0000000 to 0xa000000 because the memory re-
gion after 0xc0000000 is occupied by the host oper-
ating system kernel.

Note that this modification is achieved without
detailed knowledge about the NetBSD kernel. This
is the significant difference from conventional user-
level OSes, such as User Mode Linux. User Mode
Linux requires adding a new architecture called um.
The code size under the um directory is 33,000 lines,
and this is comparable with the code size of the na-
tive i386 architecture (44,000 lines). This porting
may cause a maintenance problem. When the na-
tive i386 architecture gets a new facility, the um ar-
chitecture has to catch up the facility manually. In
contrast, the core of our user-level NetBSD is auto-
matically generated from the native i386 NetBSD.
Therefore, we can follow the evolution of native i386
NetBSD more easily.

5.2 Modifications to FreeBSD for run-
ning as a user process

We have also executed the FreeBSD 4.7 kernel as
a user process. In addition to address constants, we
have changed the places that call BIOS. We have

simply commented out the places and replaced with
the code that returns parameters, such as the size
of memory and the type of CPU. Since we did not
have BIOS code, changing the FreeBSD kernel was
much easier than implementing BIOS. Furthermore,
changing the kernel reduces the effort to implement
the partial emulator. Calling BIOS requires emu-
lation of the virtual 8086 mode of Pentium. Our
partial emulator does not have that facility. If we
have BIOS code and a more powerful emulator, we
do not have to modify these places.

6 Performance

We made experiments to measure the performance
of our user-level OS (NetBSD 1.5.2). In this section,
we show the results of microbenchmarks and an ap-
plication benchmark.

All experiments were performed on a PC with a
Pentium III 1GHz and 512M bytes of main memory.
The host operating system for our partial emulator
is Debian 3.0 with the Linux kernel 2.4.20 2.

6.1 Microbenchmarks

As microbenchmarks, we use the following user
programs:

loop: This program increments a variable in a loop.
This program does not issue any system call
during the experiments although the execution
is interrupted by the timer.

getpid: This program issues the system call
getpid(), repeatedly.

pipesw: This program creates two processes which
are connected with two pipes. Each process
writes and reads a byte for each step in a loop,
so two context switches and four system calls
are performed in a step.

fork: This program creates and terminates pro-
cesses repeatedly. The parent process issues the
system calls fork() and wait(), and the child
processes issue the system call exit().

2Currently, NetBSD on NetBSD is not stable enough to
measure performance.

Table 1: The execution times of microbenchmark programs.

program
OS/Environment loop getpid pipesw fork

(n sec) (u sec) (u sec) (m sec)
NetBSD/PE-Insert/Linux 2.04 136 2880 89.9
NetBSD/PE-Rewrite/Linux 2.00 23.0 1030 19.0
NetBSD/Physical 1.99 0.360 19.8 0.380
NetBSD/Bochs/NetBSD 288 68.0 1600 34.9
NetBSD/VMware/Linux 2.01 3.53 83.7 2.550
Linux/Physical 1.99 0.299 5.53 0.114
User Mode Linux/Linux 1.99 44.1 665 31.7
Linux/Plex86/Linux 1.99 20.0 346 1.76

In these experiments, we measured the peak per-
formance. In each execution, the task is repeated
from 100 to 10,000,000 times. The number of tri-
als is determined to be high enough to reach sev-
eral tents of milliseconds to several seconds. The
execution times were obtained using the system call
gettimeofday() for the host OS, and divided by the
number of iterations.

The result is shown in Table 1. In Table 1, “PE-
” sands for our partial emulator. “Insert” means
the insertion method (Section 3.1.1), and “Rewrite”
means the rewriting method (Section 3.1.1), respec-
tively. For reference, we include the results of the
following operating systems and environments:

• NetBSD 1.6.1 on the physical PC

• NetBSD 1.5.2 on Bochs 2.02 on NetBSD 1.6.1

• NetBSD 1.5.2 on VMware 4.0 on Linux 2.4.20

• User Mode Linux 2.4.20-uml-6 on Linux 2.4.20

• Linux 2.4.20 on the physical PC

• Linux on Plex86 2003-02-16 on Linux 2.4.20
with NFS 3

For the program loop, both of our partial emula-
tors (“PE-Insert” and “PE-Rewrite”) produced al-
most same performance as the physical PC because
the measured part of the benchmark program is ex-
ecuted by the real CPU directly. By the same rea-
son, our user-level NetBSD is faster than NetBSD
on Bochs by a factor of 100.

3The current Plex86 uses a small RAM disk as a root de-
vice. We mounted the host file system with NFS and ran
the benchmarks after changing the root directory to the host
root.

In the cases of getpid, pipesw and fork, our par-
tial emulator is slower than the physical machine by
a factor of 100 and VMware by a factor of 10. This
slowdown is cased by overheads of the system call
redirection (Section 3.2) and the MMU emulation
(Section 3.3). We got performance improvement by
a factor of 2.8 to 5.9 between “PE-Insert” and “PE-
Rewrite”.

We cannot simply compare our partial emula-
tor with User Mode Linux and Plex86 because the
user-level OSes are different. As shown in Table 1,
NetBSD/Physical is slower than Linux/Physical in
those microbenchmarks. If we ignore the difference
of user-level OSes, NetBSD on our partial emulator
of “PE-Rewrite” is faster than User Mode Linux in
the cases of getpid and fork. Our partial emulators
are slower than Plex86 because Plex86 uses an effi-
cient hardware mechanism called PVI, as described
in Section 2.

6.2 An application benchmark

We ran the make command for compiling the
GNU patch command (Version 2.5.4), and measured
the execution times. The source code of the patch
command consists of 15 C files and 17 headers. To-
tal length of those files is 9200 lines or 244 k bytes
4. The result is shown in Table 2.

NetBSDs on our partial emulators were faster
than NetBSD on Bochs by a factor of 10. However,
they were slower than NetBSD on the physical PC

4Although the source files are same on NetBSD and Linux,
the header files in /usr/include are different. In this com-
pilation, total 460 header files (2 M bytes) are included in
NetBSD while 770 header files (6 M bytes) are included in
Linux. Therefore, the execution time on NetBSD/Physical is
shorter than that on Linux/Physical.

and VMware by a factor of 15 and 4, respectively.
The ratios are smaller than the results of the mi-
crobenchmarks getpid, pipesw, and fork because
this application benchmark includes a CPU work-
load. Our user-level NetBSD is slower than User
Mode Linux and Linux/Plex86 because of the MMU
emulation overhead.

7 Future directions

Our projects began on June 2002, and we have
many tasks to be accomplished. Those tasks are
classified into two categories:

• Adding new functions.

• Improving performance.

For each of functionality and performance, we have
to choose or combine the following strategies:

• To modify the partial emulator.

• To modify host OSes.

• To modify user-level OSes.

The first strategy is best because it is independent
of host and user-level OSes.

The first priority task on functionality is to add a
networking facility. We are implementing a pseudo
serial device for communicating between a user-level
OS and a host OS. This serial device can be used
for passing PPP packets. We also have a plan to
implement an Ethernet-like device.

Table 2: The execution times of compilation in sec-
onds.

make
OS/Environment (sec)
NetBSD/PE-Insert/Linux 52.5
NetBSD/PE-Rewrite/Linux 13.7
NetBSD/Physical 3.6
NetBSD/Bochs/Linux 550
NetBSD/VMware/Linux 3.9
Linux/Physical 4.1
User Mode Linux/Linux 9.5
Linux/Plex86/Linux 13.0

We are also interested in a function to access host
file systems, as similar to the host file system of
User Mode Linux. A straightforward implementa-
tion method is to insert a module to the VFS layer
while we have to implement the module for each host
OS. By using the networking facility, we can access
host file systems through the NFS protocol and the
SMB protocol.

As shown in Section 6, the main sources of
overhead are the MMU emulation and the system
call/page fault redirection.

To enhance the MMU emulation, we can cache
address spaces as user processes of the host OS.
As similar to the hardware context table of SPARC
[SPA92], we can preserve and reuse user processes
as page tables. In other words, the partial emula-
tor forks when the MMU register of the page table
gets a new value. If we cache page tables, we have
to discard unused page tables or user processes of
the host OS. If some LRU algorithm works well, we
do not have to modify the user-level OS. Otherwise,
we should modify the user-level OS to invalidate the
cache on termination of its user processes.

We are also studying to introduce a new kernel
level abstraction called a virtual page table. With
this facility, a user-level OS can manipulate its page
tables by issuing a new system call for the host OS.
Unlike regular system calls, this system call for vir-
tual page tables should depend on underlying hard-
ware because we can preserve the structure and se-
mantics of the base native OS. If we use a differ-
ent facility, such as the external pager of the Mach
microkernel, we have to change the base native OS
more.

In the current implementation, the partial emu-
lator does not handle the segment facility of IA-32
completely because most operating systems includ-
ing NetBSD do not make use of the segment facility.
The partial emulator interprets only address trans-
lation and write protection in the two-level page ta-
ble. The partial emulator does not interpret other
bits, such as Accessed and User/Supervisor for per-
formance. Therefore, a user-level OS cannot perform
page replacement efficiently. Moreover, the partial
emulator does not change the memory protection on
switching from the kernel mode to the user mode
for performance reason. In IA-32, most operating
systems including NetBSD do not change the MMU
setting when the context is transferred from the user
mode to the kernel mode or vice versa. Therefore,

user processes can access the kernel memory. We
would like to add a protection facility of the kernel
memory after implementing the caching facility.

8 Conclusion

In this paper, we have proposed an implementa-
tion method of user-level operating systems based
on partial emulation of PC hardware and rewriting
of machine instructions at compile time. Unlike con-
ventional methods, user-level operating systems are
generated from the native operating systems. There-
fore, no detailed knowledge about the native operat-
ing systems is needed to implement the user-level op-
erating system. Based on the proposed method, we
have executed NetBSD and FreeBSD kernels as user
processes on Linux and NetBSD with small changes
from the corresponding native systems.

The partial emulator on Linux can be used for run-
ning NetBSD and FreeBSD applications on Linux.
We have nested operating system environments for
NetBSD, so we can use several versions of NetBSD
co-exist on the same platform.

We hope that our partial emulator will be one of
the most popular tools for nested BSD operating
systems. For developers, nested operating systems
will be an essential facility to experiment with new
kernels or new release while keeping the base envi-
ronment safely. We are working on adding a net-
working facility to our partial emulator. With the
networking facility, we can execute Internet servers
on user-level operating systems, and we can couple
user-level operating systems with the host operating
system more tightly.

References

[AAS94] P. Ashton, D. Ayers, and P. Smith. SunOS
Minix: a tool for use in operating system
laboratories. Australian Computer Science
Communications, 16(1):259–269, 1994.

[Dik00] Jeff Dike. A user-mode port of the linux
kernel. In the 4th Annual Linux Showcase &
Conference, 2000.

[FHL+96] Bryan Ford, Mike Hibler, Jay Lepreau,
Patrick Tullmann, Godmar Back, and
Stephen Clawson. Microkernels meet recur-
sive virtual machines. In Operating Systems

Design and Implementation, pages 137–151,
1996.

[GDFR90] David B. Golub, Randall W. Dean, Alessan-
dro Forin, and Richard F. Rashid. UNIX as
an application program. In USENIX Sum-
mer, pages 87–95, 1990.

[HH79] E. C. Hendricks and T. C. Hartmann. Evo-
lution of a virtual machine subsystem. IBM
System Journal, 18(1):111–142, 1979.

[HMM03] Brian N. Handy, Rich Murphey, and Jim
Mock. FreeBSD Handbook, Linux Binary
Compatibility, 2003.

[Int97] Intel Corporation. IA-32 Intel Architecture
Software Developer’s Manual, 1997.

[Law03] Kevin P. Lawton. The Plex86
x86 Virtual Machine Project, 2003.
http://plex86.sourceforge.net/.

[LDG+03] Kevin Lawton, Bryce Denney, N. David
Guarneri, Volker Ruppert, Christophe Both-
amy, and Michael Calabrese. Bochs
x86 PC emulator Users Manual, 2003.
http://bochs.sourceforge.net/.

[LF03] Federico Lupi and The NetBSD Foundation.
The NetBSD Operating System, A Guide,
Chapter 14. Linux emulation, 2003.

[LW73] Hugh C. Lauer and David Wyeth. A recur-
sive virtual machine architecture. In Pro-
ceedings of the ACM SIGOPS/SIGARCH
workshop on virtual computer systems, pages
113–116, 1973.

[Pap00] A Connectix White Paper. The Technology
of Virtual PC, 2000.

[SPA92] SPARC International. The SPARC architec-
ture manual: Version 8. Prentice-Hall, 1992.

[SVL01] Jeremy Sugerman, Ganesh Venkitachalam,
and Beng-Hong Lim. Virtualizing I/O de-
vices on VMware workstation’s hosted vir-
tual machine monitor. In USENIX Annual
Technical Conference, 2001.

[Tad92] Yoshikatsu Tada. A virtual operating system
VXinu — its implementation and problems.
Transactions of the Institute of Electronics,
Information and Communication Engineers,
J75-D-1(1):10–18, 1992.

[WLAG93] Robert Wahbe, Steven Lucco, Thomas E.
Anderson, and Susan L. Graham. Ef-
ficient software-based fault isolation.
ACM SIGOPS Operating Systems Review,
27(5):203–216, December 1993.

[Yok92] Yasuhiko Yokote. The apertos reflective op-
erating system: The concept and its imple-
mentation. In Proceedings of the Confer-
ence on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOP-
SLA), volume 27, pages 414–434, 1992.

